หาค่า
\frac{x^{3}}{3}+x^{2}-35x+С
หาอนุพันธ์ของ w.r.t. x
\left(x-5\right)\left(x+7\right)
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\int x^{2}-5x+7x-35\mathrm{d}x
ใช้คุณสมบัติการแจกแจง โดยการคูณแต่ละพจน์ของ x+7 กับแต่ละพจน์ของ x-5
\int x^{2}+2x-35\mathrm{d}x
รวม -5x และ 7x เพื่อให้ได้รับ 2x
\int x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -35\mathrm{d}x
รวมผลรวมทีละพจน์
\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -35\mathrm{d}x
แยกตัวประกอบค่าคงที่ในแต่ละพจน์
\frac{x^{3}}{3}+2\int x\mathrm{d}x+\int -35\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{2}\mathrm{d}x ด้วย \frac{x^{3}}{3}
\frac{x^{3}}{3}+x^{2}+\int -35\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x\mathrm{d}x ด้วย \frac{x^{2}}{2} คูณ 2 ด้วย \frac{x^{2}}{2}
\frac{x^{3}}{3}+x^{2}-35x
ค้นหาอินทิกรัลของ -35 โดยใช้ \int a\mathrm{d}x=ax ของกฎอินทิกรัลทั่วไป
\frac{x^{3}}{3}+x^{2}-35x+С
ถ้า F\left(x\right) เป็น antiderivative ของ f\left(x\right) จากนั้นชุดของ f\left(x\right) antiderivatives ทั้งหมดที่ได้รับมาจาก F\left(x\right)+C ดังนั้นให้เพิ่มค่าคงที่ของการรวม C\in \mathrm{R} ลงในผลลัพธ์
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}