ข้ามไปที่เนื้อหาหลัก
หาค่า
Tick mark Image
หาอนุพันธ์ของ w.r.t. x
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-1\right)}{x-1}+\frac{1}{x-1})
เมื่อต้องการเพิ่มหรือลบนิพจน์ ให้ขยายเพื่อทำให้ตัวส่วนของนิพจน์เหล่านั้นเหมือนกัน คูณ x ด้วย \frac{x-1}{x-1}
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-1\right)+1}{x-1})
เนื่องจาก \frac{x\left(x-1\right)}{x-1} และ \frac{1}{x-1} มีตัวส่วนเดียวกัน ให้เพิ่มโดยการบวกตัวเศษ
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-x+1}{x-1})
ทำการคูณใน x\left(x-1\right)+1
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}+1)-\left(x^{2}-x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
สำหรับสองฟังก์ชันที่หาอนุพันธ์ได้ อนุพันธ์ของผลหารของทั้งสองฟังก์ชันคือ ตัวส่วนคูณด้วยอนุพันธ์ของตัวเศษลบด้วยตัวเศษคูณด้วยอนุพันธ์ของตัวส่วน ทั้งหมดถูกหารด้วยตัวส่วนที่ยกกำลังสองแล้ว
\frac{\left(x^{1}-1\right)\left(2x^{2-1}-x^{1-1}\right)-\left(x^{2}-x^{1}+1\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
\frac{\left(x^{1}-1\right)\left(2x^{1}-x^{0}\right)-\left(x^{2}-x^{1}+1\right)x^{0}}{\left(x^{1}-1\right)^{2}}
ทำให้ง่ายขึ้น
\frac{x^{1}\times 2x^{1}+x^{1}\left(-1\right)x^{0}-2x^{1}-\left(-x^{0}\right)-\left(x^{2}-x^{1}+1\right)x^{0}}{\left(x^{1}-1\right)^{2}}
คูณ x^{1}-1 ด้วย 2x^{1}-x^{0}
\frac{x^{1}\times 2x^{1}+x^{1}\left(-1\right)x^{0}-2x^{1}-\left(-x^{0}\right)-\left(x^{2}x^{0}-x^{1}x^{0}+x^{0}\right)}{\left(x^{1}-1\right)^{2}}
คูณ x^{2}-x^{1}+1 ด้วย x^{0}
\frac{2x^{1+1}-x^{1}-2x^{1}-\left(-x^{0}\right)-\left(x^{2}-x^{1}+x^{0}\right)}{\left(x^{1}-1\right)^{2}}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน เพิ่มเลขชี้กำลังของจำนวนเหล่านั้น
\frac{2x^{2}-x^{1}-2x^{1}+x^{0}-\left(x^{2}-x^{1}+x^{0}\right)}{\left(x^{1}-1\right)^{2}}
ทำให้ง่ายขึ้น
\frac{x^{2}-2x^{1}}{\left(x^{1}-1\right)^{2}}
รวมพจน์ที่เหมือนกัน
\frac{x^{2}-2x}{\left(x-1\right)^{2}}
สำหรับพจน์ใดๆ ที่ t ให้ t^{1}=t