ข้ามไปที่เนื้อหาหลัก
หาค่า
Tick mark Image
แยกตัวประกอบ
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\frac{16a^{2}}{400}+\frac{25b^{2}}{400}-\frac{ab}{10}
เมื่อต้องการเพิ่มหรือลบนิพจน์ ให้ขยายเพื่อทำให้ตัวส่วนของนิพจน์เหล่านั้นเหมือนกัน ตัวคูณร่วมน้อยของ 25 และ 16 คือ 400 คูณ \frac{a^{2}}{25} ด้วย \frac{16}{16} คูณ \frac{b^{2}}{16} ด้วย \frac{25}{25}
\frac{16a^{2}+25b^{2}}{400}-\frac{ab}{10}
เนื่องจาก \frac{16a^{2}}{400} และ \frac{25b^{2}}{400} มีตัวส่วนเดียวกัน ให้เพิ่มโดยการบวกตัวเศษ
\frac{16a^{2}+25b^{2}}{400}-\frac{40ab}{400}
เมื่อต้องการเพิ่มหรือลบนิพจน์ ให้ขยายเพื่อทำให้ตัวส่วนของนิพจน์เหล่านั้นเหมือนกัน ตัวคูณร่วมน้อยของ 400 และ 10 คือ 400 คูณ \frac{ab}{10} ด้วย \frac{40}{40}
\frac{16a^{2}+25b^{2}-40ab}{400}
เนื่องจาก \frac{16a^{2}+25b^{2}}{400} และ \frac{40ab}{400} มีตัวส่วนเดียวกัน ให้ลบโดยการลบตัวเศษ
\frac{16a^{2}+25b^{2}-40ab}{400}
แยกตัวประกอบ \frac{1}{400}
\left(4a-5b\right)^{2}
พิจารณา 16a^{2}+25b^{2}-40ab ใช้สูตรที่เป็นสี่เหลี่ยมที่สมบูรณ์ p^{2}-2pq+q^{2}=\left(p-q\right)^{2} ที่ p=4a และ q=5b
\frac{\left(4a-5b\right)^{2}}{400}
เขียนนิพจน์ที่แยกตัวประกอบสมบูรณ์ใหม่