หาค่า
\frac{5}{x-5}
หาอนุพันธ์ของ w.r.t. x
-\frac{5}{\left(x-5\right)^{2}}
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\frac{5x}{x\left(x-5\right)}
แยกตัวประกอบนิพจน์ที่ยังไม่ได้แยกตัวประกอบ
\frac{5}{x-5}
ตัด x ออกจากทั้งตัวเศษและตัวส่วน
\frac{\left(x^{2}-5x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1})-5x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-5x^{1})}{\left(x^{2}-5x^{1}\right)^{2}}
สำหรับสองฟังก์ชันที่หาอนุพันธ์ได้ อนุพันธ์ของผลหารของทั้งสองฟังก์ชันคือ ตัวส่วนคูณด้วยอนุพันธ์ของตัวเศษลบด้วยตัวเศษคูณด้วยอนุพันธ์ของตัวส่วน ทั้งหมดถูกหารด้วยตัวส่วนที่ยกกำลังสองแล้ว
\frac{\left(x^{2}-5x^{1}\right)\times 5x^{1-1}-5x^{1}\left(2x^{2-1}-5x^{1-1}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
\frac{\left(x^{2}-5x^{1}\right)\times 5x^{0}-5x^{1}\left(2x^{1}-5x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
ทำให้ง่ายขึ้น
\frac{x^{2}\times 5x^{0}-5x^{1}\times 5x^{0}-5x^{1}\left(2x^{1}-5x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
คูณ x^{2}-5x^{1} ด้วย 5x^{0}
\frac{x^{2}\times 5x^{0}-5x^{1}\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\left(-5\right)x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
คูณ 5x^{1} ด้วย 2x^{1}-5x^{0}
\frac{5x^{2}-5\times 5x^{1}-\left(5\times 2x^{1+1}+5\left(-5\right)x^{1}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน เพิ่มเลขชี้กำลังของจำนวนเหล่านั้น
\frac{5x^{2}-25x^{1}-\left(10x^{2}-25x^{1}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
ทำให้ง่ายขึ้น
\frac{-5x^{2}}{\left(x^{2}-5x^{1}\right)^{2}}
รวมพจน์ที่เหมือนกัน
\frac{-5x^{2}}{\left(x^{2}-5x\right)^{2}}
สำหรับพจน์ใดๆ ที่ t ให้ t^{1}=t
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}