หาค่า
\frac{4}{3x+1}
หาอนุพันธ์ของ w.r.t. x
-\frac{12}{\left(3x+1\right)^{2}}
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\frac{4x}{x\left(3x+1\right)}
แยกตัวประกอบนิพจน์ที่ยังไม่ได้แยกตัวประกอบ
\frac{4}{3x+1}
ตัด x ออกจากทั้งตัวเศษและตัวส่วน
\frac{\left(3x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(4x^{1})-4x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}+x^{1})}{\left(3x^{2}+x^{1}\right)^{2}}
สำหรับสองฟังก์ชันที่หาอนุพันธ์ได้ อนุพันธ์ของผลหารของทั้งสองฟังก์ชันคือ ตัวส่วนคูณด้วยอนุพันธ์ของตัวเศษลบด้วยตัวเศษคูณด้วยอนุพันธ์ของตัวส่วน ทั้งหมดถูกหารด้วยตัวส่วนที่ยกกำลังสองแล้ว
\frac{\left(3x^{2}+x^{1}\right)\times 4x^{1-1}-4x^{1}\left(2\times 3x^{2-1}+x^{1-1}\right)}{\left(3x^{2}+x^{1}\right)^{2}}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
\frac{\left(3x^{2}+x^{1}\right)\times 4x^{0}-4x^{1}\left(6x^{1}+x^{0}\right)}{\left(3x^{2}+x^{1}\right)^{2}}
ทำให้ง่ายขึ้น
\frac{3x^{2}\times 4x^{0}+x^{1}\times 4x^{0}-4x^{1}\left(6x^{1}+x^{0}\right)}{\left(3x^{2}+x^{1}\right)^{2}}
คูณ 3x^{2}+x^{1} ด้วย 4x^{0}
\frac{3x^{2}\times 4x^{0}+x^{1}\times 4x^{0}-\left(4x^{1}\times 6x^{1}+4x^{1}x^{0}\right)}{\left(3x^{2}+x^{1}\right)^{2}}
คูณ 4x^{1} ด้วย 6x^{1}+x^{0}
\frac{3\times 4x^{2}+4x^{1}-\left(4\times 6x^{1+1}+4x^{1}\right)}{\left(3x^{2}+x^{1}\right)^{2}}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน เพิ่มเลขชี้กำลังของจำนวนเหล่านั้น
\frac{12x^{2}+4x^{1}-\left(24x^{2}+4x^{1}\right)}{\left(3x^{2}+x^{1}\right)^{2}}
ทำให้ง่ายขึ้น
\frac{-12x^{2}}{\left(3x^{2}+x^{1}\right)^{2}}
รวมพจน์ที่เหมือนกัน
\frac{-12x^{2}}{\left(3x^{2}+x\right)^{2}}
สำหรับพจน์ใดๆ ที่ t ให้ t^{1}=t
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}