ข้ามไปที่เนื้อหาหลัก
หาอนุพันธ์ของ w.r.t. c
Tick mark Image
หาค่า
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\frac{\left(16c^{2}-9\right)\frac{\mathrm{d}}{\mathrm{d}c}(4c^{1})-4c^{1}\frac{\mathrm{d}}{\mathrm{d}c}(16c^{2}-9)}{\left(16c^{2}-9\right)^{2}}
สำหรับสองฟังก์ชันที่หาอนุพันธ์ได้ อนุพันธ์ของผลหารของทั้งสองฟังก์ชันคือ ตัวส่วนคูณด้วยอนุพันธ์ของตัวเศษลบด้วยตัวเศษคูณด้วยอนุพันธ์ของตัวส่วน ทั้งหมดถูกหารด้วยตัวส่วนที่ยกกำลังสองแล้ว
\frac{\left(16c^{2}-9\right)\times 4c^{1-1}-4c^{1}\times 2\times 16c^{2-1}}{\left(16c^{2}-9\right)^{2}}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
\frac{\left(16c^{2}-9\right)\times 4c^{0}-4c^{1}\times 32c^{1}}{\left(16c^{2}-9\right)^{2}}
ดำเนินการทางคณิตศาสตร์
\frac{16c^{2}\times 4c^{0}-9\times 4c^{0}-4c^{1}\times 32c^{1}}{\left(16c^{2}-9\right)^{2}}
ขยายโดยใช้คุณสมบัติการแจกแจง
\frac{16\times 4c^{2}-9\times 4c^{0}-4\times 32c^{1+1}}{\left(16c^{2}-9\right)^{2}}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน เพิ่มเลขชี้กำลังของจำนวนเหล่านั้น
\frac{64c^{2}-36c^{0}-128c^{2}}{\left(16c^{2}-9\right)^{2}}
ดำเนินการทางคณิตศาสตร์
\frac{\left(64-128\right)c^{2}-36c^{0}}{\left(16c^{2}-9\right)^{2}}
รวมพจน์ที่เหมือนกัน
\frac{-64c^{2}-36c^{0}}{\left(16c^{2}-9\right)^{2}}
ลบ 128 จาก 64
\frac{4\left(-16c^{2}-9c^{0}\right)}{\left(16c^{2}-9\right)^{2}}
แยกตัวประกอบ 4
\frac{4\left(-16c^{2}-9\right)}{\left(16c^{2}-9\right)^{2}}
สำหรับพจน์ใดๆ ที่ t ยกเว้น 0 ให้ t^{0}=1