หาค่า
x
หาอนุพันธ์ของ w.r.t. x
1
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\frac{2x^{2}\left(-3\right)-6x^{2}}{-12x}
คูณ x และ x เพื่อรับ x^{2}
\frac{-6x^{2}-6x^{2}}{-12x}
คูณ 2 และ -3 เพื่อรับ -6
\frac{-12x^{2}}{-12x}
รวม -6x^{2} และ -6x^{2} เพื่อให้ได้รับ -12x^{2}
x
ตัด -12x ออกจากทั้งตัวเศษและตัวส่วน
\frac{-12x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(\left(-6x\right)x^{1}-6x^{2})-\left(\left(-6x\right)x^{1}-6x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(-12x^{1})}{\left(-12x^{1}\right)^{2}}
สำหรับสองฟังก์ชันที่หาอนุพันธ์ได้ อนุพันธ์ของผลหารของทั้งสองฟังก์ชันคือ ตัวส่วนคูณด้วยอนุพันธ์ของตัวเศษลบด้วยตัวเศษคูณด้วยอนุพันธ์ของตัวส่วน ทั้งหมดถูกหารด้วยตัวส่วนที่ยกกำลังสองแล้ว
\frac{-12x^{1}\left(\left(-6x\right)x^{1-1}+2\left(-6\right)x^{2-1}\right)-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{1-1}}{\left(-12x^{1}\right)^{2}}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
\frac{-12x^{1}\left(\left(-6x\right)x^{0}-12x^{1}\right)-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{0}}{\left(-12x^{1}\right)^{2}}
ทำให้ง่ายขึ้น
\frac{-12x^{1}\left(-6x\right)x^{0}-12x^{1}\left(-12\right)x^{1}-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{0}}{\left(-12x^{1}\right)^{2}}
คูณ -12x^{1} ด้วย \left(-6x\right)x^{0}-12x^{1}
\frac{-12x^{1}\left(-6x\right)x^{0}-12x^{1}\left(-12\right)x^{1}-\left(\left(-6x\right)x^{1}\left(-12\right)x^{0}-6x^{2}\left(-12\right)x^{0}\right)}{\left(-12x^{1}\right)^{2}}
คูณ \left(-6x\right)x^{1}-6x^{2} ด้วย -12x^{0}
\frac{-12\left(-6x\right)x^{1}-12\left(-12\right)x^{1+1}-\left(\left(-6x\right)\left(-12\right)x^{1}-6\left(-12\right)x^{2}\right)}{\left(-12x^{1}\right)^{2}}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน เพิ่มเลขชี้กำลังของจำนวนเหล่านั้น
\frac{72xx^{1}+144x^{2}-\left(72xx^{1}+72x^{2}\right)}{\left(-12x^{1}\right)^{2}}
ทำให้ง่ายขึ้น
\frac{72x^{2}}{\left(-12x^{1}\right)^{2}}
รวมพจน์ที่เหมือนกัน
\frac{72x^{2}}{\left(-12x\right)^{2}}
สำหรับพจน์ใดๆ ที่ t ให้ t^{1}=t
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}