หาอนุพันธ์ของ w.r.t. x
54\times \left(\frac{x}{x^{3}+9}\right)^{2}
หาค่า
\frac{2x^{3}}{x^{3}+9}
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\frac{\left(x^{3}+9\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3})-2x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+9)}{\left(x^{3}+9\right)^{2}}
สำหรับสองฟังก์ชันที่หาอนุพันธ์ได้ อนุพันธ์ของผลหารของทั้งสองฟังก์ชันคือ ตัวส่วนคูณด้วยอนุพันธ์ของตัวเศษลบด้วยตัวเศษคูณด้วยอนุพันธ์ของตัวส่วน ทั้งหมดถูกหารด้วยตัวส่วนที่ยกกำลังสองแล้ว
\frac{\left(x^{3}+9\right)\times 3\times 2x^{3-1}-2x^{3}\times 3x^{3-1}}{\left(x^{3}+9\right)^{2}}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
\frac{\left(x^{3}+9\right)\times 6x^{2}-2x^{3}\times 3x^{2}}{\left(x^{3}+9\right)^{2}}
ดำเนินการทางคณิตศาสตร์
\frac{x^{3}\times 6x^{2}+9\times 6x^{2}-2x^{3}\times 3x^{2}}{\left(x^{3}+9\right)^{2}}
ขยายโดยใช้คุณสมบัติการแจกแจง
\frac{6x^{3+2}+9\times 6x^{2}-2\times 3x^{3+2}}{\left(x^{3}+9\right)^{2}}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน เพิ่มเลขชี้กำลังของจำนวนเหล่านั้น
\frac{6x^{5}+54x^{2}-6x^{5}}{\left(x^{3}+9\right)^{2}}
ดำเนินการทางคณิตศาสตร์
\frac{\left(6-6\right)x^{5}+54x^{2}}{\left(x^{3}+9\right)^{2}}
รวมพจน์ที่เหมือนกัน
\frac{54x^{2}}{\left(x^{3}+9\right)^{2}}
ลบ 6 จาก 6
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}