หาค่า
\frac{2x\left(x+6\right)}{x+5}
ขยาย
\frac{2\left(x^{2}+6x\right)}{x+5}
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\frac{\left(2x^{2}-12x\right)\left(x+6\right)}{\left(x+5\right)\left(x-6\right)}
หาร \frac{2x^{2}-12x}{x+5} ด้วย \frac{x-6}{x+6} โดยคูณ \frac{2x^{2}-12x}{x+5} ด้วยส่วนกลับของ \frac{x-6}{x+6}
\frac{2x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+5\right)}
แยกตัวประกอบนิพจน์ที่ยังไม่ได้แยกตัวประกอบ
\frac{2x\left(x+6\right)}{x+5}
ตัด x-6 ออกจากทั้งตัวเศษและตัวส่วน
\frac{2x^{2}+12x}{x+5}
ขยายนิพจน์
\frac{\left(2x^{2}-12x\right)\left(x+6\right)}{\left(x+5\right)\left(x-6\right)}
หาร \frac{2x^{2}-12x}{x+5} ด้วย \frac{x-6}{x+6} โดยคูณ \frac{2x^{2}-12x}{x+5} ด้วยส่วนกลับของ \frac{x-6}{x+6}
\frac{2x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+5\right)}
แยกตัวประกอบนิพจน์ที่ยังไม่ได้แยกตัวประกอบ
\frac{2x\left(x+6\right)}{x+5}
ตัด x-6 ออกจากทั้งตัวเศษและตัวส่วน
\frac{2x^{2}+12x}{x+5}
ขยายนิพจน์
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}