ข้ามไปที่เนื้อหาหลัก
หาอนุพันธ์ของ w.r.t. v
Tick mark Image
หาค่า
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\frac{\left(3v^{1}-9\right)\frac{\mathrm{d}}{\mathrm{d}v}(2v^{1})-2v^{1}\frac{\mathrm{d}}{\mathrm{d}v}(3v^{1}-9)}{\left(3v^{1}-9\right)^{2}}
สำหรับสองฟังก์ชันที่หาอนุพันธ์ได้ อนุพันธ์ของผลหารของทั้งสองฟังก์ชันคือ ตัวส่วนคูณด้วยอนุพันธ์ของตัวเศษลบด้วยตัวเศษคูณด้วยอนุพันธ์ของตัวส่วน ทั้งหมดถูกหารด้วยตัวส่วนที่ยกกำลังสองแล้ว
\frac{\left(3v^{1}-9\right)\times 2v^{1-1}-2v^{1}\times 3v^{1-1}}{\left(3v^{1}-9\right)^{2}}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
\frac{\left(3v^{1}-9\right)\times 2v^{0}-2v^{1}\times 3v^{0}}{\left(3v^{1}-9\right)^{2}}
ดำเนินการทางคณิตศาสตร์
\frac{3v^{1}\times 2v^{0}-9\times 2v^{0}-2v^{1}\times 3v^{0}}{\left(3v^{1}-9\right)^{2}}
ขยายโดยใช้คุณสมบัติการแจกแจง
\frac{3\times 2v^{1}-9\times 2v^{0}-2\times 3v^{1}}{\left(3v^{1}-9\right)^{2}}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน เพิ่มเลขชี้กำลังของจำนวนเหล่านั้น
\frac{6v^{1}-18v^{0}-6v^{1}}{\left(3v^{1}-9\right)^{2}}
ดำเนินการทางคณิตศาสตร์
\frac{\left(6-6\right)v^{1}-18v^{0}}{\left(3v^{1}-9\right)^{2}}
รวมพจน์ที่เหมือนกัน
\frac{-18v^{0}}{\left(3v^{1}-9\right)^{2}}
ลบ 6 จาก 6
\frac{-18v^{0}}{\left(3v-9\right)^{2}}
สำหรับพจน์ใดๆ ที่ t ให้ t^{1}=t
\frac{-18}{\left(3v-9\right)^{2}}
สำหรับพจน์ใดๆ ที่ t ยกเว้น 0 ให้ t^{0}=1