ข้ามไปที่เนื้อหาหลัก
หาอนุพันธ์ของ w.r.t. t
Tick mark Image
หาค่า
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

-\left(5t^{1}-1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}t}(5t^{1}-1)
ถ้า F เป็นส่วนประกอบของสองฟังก์ชันที่หาอนุพันธ์ได้ f\left(u\right) และ u=g\left(x\right) นั่นคือ ถ้า F\left(x\right)=f\left(g\left(x\right)\right) ดังนั้น อนุพันธ์ของ F คืออนุพันธ์ของ f ที่สอดคล้องกับ u คูณด้วยอนุพันธ์ของ g ที่สอดคล้องกับ x นั่นคือ \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)
-\left(5t^{1}-1\right)^{-2}\times 5t^{1-1}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
-5t^{0}\left(5t^{1}-1\right)^{-2}
ทำให้ง่ายขึ้น
-5t^{0}\left(5t-1\right)^{-2}
สำหรับพจน์ใดๆ ที่ t ให้ t^{1}=t
-5\left(5t-1\right)^{-2}
สำหรับพจน์ใดๆ ที่ t ยกเว้น 0 ให้ t^{0}=1