ข้ามไปที่เนื้อหาหลัก
หาค่า
Tick mark Image
ขยาย
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\frac{\frac{4y^{2}}{x^{2}y^{2}}-\frac{x^{2}}{x^{2}y^{2}}}{\frac{2}{x}-\frac{1}{y}}
เมื่อต้องการเพิ่มหรือลบนิพจน์ ให้ขยายเพื่อทำให้ตัวส่วนของนิพจน์เหล่านั้นเหมือนกัน ตัวคูณร่วมน้อยของ x^{2} และ y^{2} คือ x^{2}y^{2} คูณ \frac{4}{x^{2}} ด้วย \frac{y^{2}}{y^{2}} คูณ \frac{1}{y^{2}} ด้วย \frac{x^{2}}{x^{2}}
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2}{x}-\frac{1}{y}}
เนื่องจาก \frac{4y^{2}}{x^{2}y^{2}} และ \frac{x^{2}}{x^{2}y^{2}} มีตัวส่วนเดียวกัน ให้ลบโดยการลบตัวเศษ
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2y}{xy}-\frac{x}{xy}}
เมื่อต้องการเพิ่มหรือลบนิพจน์ ให้ขยายเพื่อทำให้ตัวส่วนของนิพจน์เหล่านั้นเหมือนกัน ตัวคูณร่วมน้อยของ x และ y คือ xy คูณ \frac{2}{x} ด้วย \frac{y}{y} คูณ \frac{1}{y} ด้วย \frac{x}{x}
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2y-x}{xy}}
เนื่องจาก \frac{2y}{xy} และ \frac{x}{xy} มีตัวส่วนเดียวกัน ให้ลบโดยการลบตัวเศษ
\frac{\left(4y^{2}-x^{2}\right)xy}{x^{2}y^{2}\left(2y-x\right)}
หาร \frac{4y^{2}-x^{2}}{x^{2}y^{2}} ด้วย \frac{2y-x}{xy} โดยคูณ \frac{4y^{2}-x^{2}}{x^{2}y^{2}} ด้วยส่วนกลับของ \frac{2y-x}{xy}
\frac{-x^{2}+4y^{2}}{xy\left(-x+2y\right)}
ตัด xy ออกจากทั้งตัวเศษและตัวส่วน
\frac{\left(x+2y\right)\left(-x+2y\right)}{xy\left(-x+2y\right)}
แยกตัวประกอบนิพจน์ที่ยังไม่ได้แยกตัวประกอบ
\frac{x+2y}{xy}
ตัด -x+2y ออกจากทั้งตัวเศษและตัวส่วน
\frac{\frac{4y^{2}}{x^{2}y^{2}}-\frac{x^{2}}{x^{2}y^{2}}}{\frac{2}{x}-\frac{1}{y}}
เมื่อต้องการเพิ่มหรือลบนิพจน์ ให้ขยายเพื่อทำให้ตัวส่วนของนิพจน์เหล่านั้นเหมือนกัน ตัวคูณร่วมน้อยของ x^{2} และ y^{2} คือ x^{2}y^{2} คูณ \frac{4}{x^{2}} ด้วย \frac{y^{2}}{y^{2}} คูณ \frac{1}{y^{2}} ด้วย \frac{x^{2}}{x^{2}}
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2}{x}-\frac{1}{y}}
เนื่องจาก \frac{4y^{2}}{x^{2}y^{2}} และ \frac{x^{2}}{x^{2}y^{2}} มีตัวส่วนเดียวกัน ให้ลบโดยการลบตัวเศษ
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2y}{xy}-\frac{x}{xy}}
เมื่อต้องการเพิ่มหรือลบนิพจน์ ให้ขยายเพื่อทำให้ตัวส่วนของนิพจน์เหล่านั้นเหมือนกัน ตัวคูณร่วมน้อยของ x และ y คือ xy คูณ \frac{2}{x} ด้วย \frac{y}{y} คูณ \frac{1}{y} ด้วย \frac{x}{x}
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2y-x}{xy}}
เนื่องจาก \frac{2y}{xy} และ \frac{x}{xy} มีตัวส่วนเดียวกัน ให้ลบโดยการลบตัวเศษ
\frac{\left(4y^{2}-x^{2}\right)xy}{x^{2}y^{2}\left(2y-x\right)}
หาร \frac{4y^{2}-x^{2}}{x^{2}y^{2}} ด้วย \frac{2y-x}{xy} โดยคูณ \frac{4y^{2}-x^{2}}{x^{2}y^{2}} ด้วยส่วนกลับของ \frac{2y-x}{xy}
\frac{-x^{2}+4y^{2}}{xy\left(-x+2y\right)}
ตัด xy ออกจากทั้งตัวเศษและตัวส่วน
\frac{\left(x+2y\right)\left(-x+2y\right)}{xy\left(-x+2y\right)}
แยกตัวประกอบนิพจน์ที่ยังไม่ได้แยกตัวประกอบ
\frac{x+2y}{xy}
ตัด -x+2y ออกจากทั้งตัวเศษและตัวส่วน