หาค่า
\frac{1}{h^{2}}
หาอนุพันธ์ของ w.r.t. h
-\frac{2}{h^{3}}
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\frac{1}{hh}
แสดง \frac{\frac{1}{h}}{h} เป็นเศษส่วนเดียวกัน
\frac{1}{h^{2}}
คูณ h และ h เพื่อรับ h^{2}
\frac{1}{h}\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})+\frac{1}{h}\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})
สำหรับฟังก์ชันที่หาอนุพันธ์ได้สองฟังก์ชัน อนุพันธ์ของผลคูณของสองฟังก์ชันคือ ฟังก์ชันแรกคูณด้วยอนุพันธ์ของฟังก์ชันที่สอง บวกด้วยฟังก์ชันที่สองคูณด้วยอนุพันธ์ของฟังก์ชันแรก
\frac{1}{h}\left(-1\right)h^{-1-1}+\frac{1}{h}\left(-1\right)h^{-1-1}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
\frac{1}{h}\left(-1\right)h^{-2}+\frac{1}{h}\left(-1\right)h^{-2}
ทำให้ง่ายขึ้น
-h^{-1-2}-h^{-1-2}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน เพิ่มเลขชี้กำลังของจำนวนเหล่านั้น
-h^{-3}-h^{-3}
ทำให้ง่ายขึ้น
\left(-1-1\right)h^{-3}
รวมพจน์ที่เหมือนกัน
-2h^{-3}
เพิ่ม -1 ไปยัง -1
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{1}h^{-1-1})
เมื่อต้องการหารเลขยกกำลังของฐานเดียวกัน ลบเลขชี้กำลังของตัวส่วนออกจากเลขชี้กำลังของตัวเศษ
\frac{\mathrm{d}}{\mathrm{d}h}(h^{-2})
ดำเนินการทางคณิตศาสตร์
-2h^{-2-1}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
-2h^{-3}
ดำเนินการทางคณิตศาสตร์
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}