หาค่า
0
แยกตัวประกอบ
0
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\left(x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+\frac{3}{2}xy\left(x-\frac{1}{2}y\right)\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
ใช้ทฤษฎีบททวินาม \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} เพื่อขยาย \left(x-\frac{1}{2}y\right)^{3}
\left(x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+\frac{3}{2}yx^{2}-\frac{3}{4}xy^{2}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
ใช้คุณสมบัติการแจกแจงเพื่อคูณ \frac{3}{2}xy ด้วย x-\frac{1}{2}y
\left(x^{3}+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}-\frac{3}{4}xy^{2}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
รวม -\frac{3}{2}x^{2}y และ \frac{3}{2}yx^{2} เพื่อให้ได้รับ 0
\left(x^{3}-\frac{1}{8}y^{3}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
รวม \frac{3}{4}xy^{2} และ -\frac{3}{4}xy^{2} เพื่อให้ได้รับ 0
\left(x^{3}\right)^{2}-\left(\frac{1}{8}y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
พิจารณา \left(x^{3}-\frac{1}{8}y^{3}\right)\left(\frac{1}{8}y^{3}+x^{3}\right) การคูณสามารถถูกแปลงเป็นยกกำลังสองต่างๆ โดยใช้กฎ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ได้
x^{6}-\left(\frac{1}{8}y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
เมื่อต้องการยกกำลังจำนวนยกกำลังอื่น ให้คูณเลขชี้กำลังด้วยกัน คูณ 3 กับ 2 ให้ได้ 6
x^{6}-\left(\frac{1}{8}\right)^{2}\left(y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
ขยาย \left(\frac{1}{8}y^{3}\right)^{2}
x^{6}-\left(\frac{1}{8}\right)^{2}y^{6}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
เมื่อต้องการยกกำลังจำนวนยกกำลังอื่น ให้คูณเลขชี้กำลังด้วยกัน คูณ 3 กับ 2 ให้ได้ 6
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
คำนวณ \frac{1}{8} กำลังของ 2 และรับ \frac{1}{64}
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}\right)^{3}\left(y^{2}\right)^{3}-x^{6}
ขยาย \left(-\frac{1}{4}y^{2}\right)^{3}
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}\right)^{3}y^{6}-x^{6}
เมื่อต้องการยกกำลังจำนวนยกกำลังอื่น ให้คูณเลขชี้กำลังด้วยกัน คูณ 2 กับ 3 ให้ได้ 6
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{64}y^{6}\right)-x^{6}
คำนวณ -\frac{1}{4} กำลังของ 3 และรับ -\frac{1}{64}
x^{6}-\frac{1}{64}y^{6}+\frac{1}{64}y^{6}-x^{6}
ตรงข้ามกับ -\frac{1}{64}y^{6} คือ \frac{1}{64}y^{6}
x^{6}-x^{6}
รวม -\frac{1}{64}y^{6} และ \frac{1}{64}y^{6} เพื่อให้ได้รับ 0
0
รวม x^{6} และ -x^{6} เพื่อให้ได้รับ 0
\frac{\left(\left(2x-y\right)^{3}+6xy\left(2x-y\right)\right)\left(y^{3}+8x^{3}\right)+y^{6}-64x^{6}}{64}
แยกตัวประกอบ \frac{1}{64}
0
ทำให้ง่ายขึ้น
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}