Gjej x
x=5
Grafiku
Share
Kopjuar në clipboard
a+b=-10 ab=25
Për të zgjidhur ekuacionin, faktorizo x^{2}-10x+25 me anë të formulës x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
-1,-25 -5,-5
Meqenëse ab është pozitive, a dhe b kanë shenjë të njëjtë. Meqenëse a+b është negative, a dhe b janë të dyja negative. Listo të gjitha këto çifte numrash të plotë që japin prodhimin 25.
-1-25=-26 -5-5=-10
Llogarit shumën për çdo çift.
a=-5 b=-5
Zgjidhja është çifti që jep shumën -10.
\left(x-5\right)\left(x-5\right)
Rishkruaj shprehjen e faktorizuar \left(x+a\right)\left(x+b\right) duke përdorur vlerat e fituara.
\left(x-5\right)^{2}
Rishkruaj si një katror binomi.
x=5
Për të gjetur zgjidhjen e ekuacionit, zgjidh x-5=0.
a+b=-10 ab=1\times 25=25
Për të zgjidhur ekuacionin, faktorizo anën e majtë nëpërmjet grupimit. Së pari, ana e majtë duhet të rishkruhet si x^{2}+ax+bx+25. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
-1,-25 -5,-5
Meqenëse ab është pozitive, a dhe b kanë shenjë të njëjtë. Meqenëse a+b është negative, a dhe b janë të dyja negative. Listo të gjitha këto çifte numrash të plotë që japin prodhimin 25.
-1-25=-26 -5-5=-10
Llogarit shumën për çdo çift.
a=-5 b=-5
Zgjidhja është çifti që jep shumën -10.
\left(x^{2}-5x\right)+\left(-5x+25\right)
Rishkruaj x^{2}-10x+25 si \left(x^{2}-5x\right)+\left(-5x+25\right).
x\left(x-5\right)-5\left(x-5\right)
Faktorizo x në grupin e parë dhe -5 në të dytin.
\left(x-5\right)\left(x-5\right)
Faktorizo pjesëtuesin e përbashkët x-5 duke përdorur vetinë e shpërndarjes.
\left(x-5\right)^{2}
Rishkruaj si një katror binomi.
x=5
Për të gjetur zgjidhjen e ekuacionit, zgjidh x-5=0.
x^{2}-10x+25=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1, b me -10 dhe c me 25 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Ngri në fuqi të dytë -10.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Shumëzo -4 herë 25.
x=\frac{-\left(-10\right)±\sqrt{0}}{2}
Mblidh 100 me -100.
x=-\frac{-10}{2}
Gjej rrënjën katrore të 0.
x=\frac{10}{2}
E kundërta e -10 është 10.
x=5
Pjesëto 10 me 2.
x^{2}-10x+25=0
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
\left(x-5\right)^{2}=0
Faktori x^{2}-10x+25. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{0}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-5=0 x-5=0
Thjeshto.
x=5 x=5
Mblidh 5 në të dyja anët e ekuacionit.
x=5
Ekuacioni është zgjidhur tani. Zgjidhjet janë njëlloj.