Найдите x (комплексное решение)
\left\{\begin{matrix}x=-\frac{8\left(72+4z-y\right)}{8-31y}\text{, }&y\neq \frac{8}{31}\\x\in \mathrm{C}\text{, }&y=\frac{8}{31}\text{ and }z=-\frac{556}{31}\end{matrix}\right,
Найдите y (комплексное решение)
\left\{\begin{matrix}y=\frac{8\left(x+4z+72\right)}{31x+8}\text{, }&x\neq -\frac{8}{31}\\y\in \mathrm{C}\text{, }&x=-\frac{8}{31}\text{ and }z=-\frac{556}{31}\end{matrix}\right,
Найдите x
\left\{\begin{matrix}x=-\frac{8\left(72+4z-y\right)}{8-31y}\text{, }&y\neq \frac{8}{31}\\x\in \mathrm{R}\text{, }&y=\frac{8}{31}\text{ and }z=-\frac{556}{31}\end{matrix}\right,
Найдите y
\left\{\begin{matrix}y=\frac{8\left(x+4z+72\right)}{31x+8}\text{, }&x\neq -\frac{8}{31}\\y\in \mathrm{R}\text{, }&x=-\frac{8}{31}\text{ and }z=-\frac{556}{31}\end{matrix}\right,
Поделиться
Скопировано в буфер обмена
y=x+72-\frac{31}{8}xy+4z
Разделите 93x на 24, чтобы получить \frac{31}{8}x.
x+72-\frac{31}{8}xy+4z=y
Поменяйте стороны местами, чтобы все переменные члены находились в левой части.
x-\frac{31}{8}xy+4z=y-72
Вычтите 72 из обеих частей уравнения.
x-\frac{31}{8}xy=y-72-4z
Вычтите 4z из обеих частей уравнения.
\left(1-\frac{31}{8}y\right)x=y-72-4z
Объедините все члены, содержащие x.
\left(-\frac{31y}{8}+1\right)x=y-4z-72
Уравнение имеет стандартный вид.
\frac{\left(-\frac{31y}{8}+1\right)x}{-\frac{31y}{8}+1}=\frac{y-4z-72}{-\frac{31y}{8}+1}
Разделите обе части на 1-\frac{31}{8}y.
x=\frac{y-4z-72}{-\frac{31y}{8}+1}
Деление на 1-\frac{31}{8}y аннулирует операцию умножения на 1-\frac{31}{8}y.
x=\frac{8\left(y-4z-72\right)}{8-31y}
Разделите y-72-4z на 1-\frac{31}{8}y.
y=x+72-\frac{31}{8}xy+4z
Разделите 93x на 24, чтобы получить \frac{31}{8}x.
y+\frac{31}{8}xy=x+72+4z
Прибавьте \frac{31}{8}xy к обеим частям.
\left(1+\frac{31}{8}x\right)y=x+72+4z
Объедините все члены, содержащие y.
\left(\frac{31x}{8}+1\right)y=x+4z+72
Уравнение имеет стандартный вид.
\frac{\left(\frac{31x}{8}+1\right)y}{\frac{31x}{8}+1}=\frac{x+4z+72}{\frac{31x}{8}+1}
Разделите обе части на 1+\frac{31}{8}x.
y=\frac{x+4z+72}{\frac{31x}{8}+1}
Деление на 1+\frac{31}{8}x аннулирует операцию умножения на 1+\frac{31}{8}x.
y=\frac{8\left(x+4z+72\right)}{31x+8}
Разделите x+72+4z на 1+\frac{31}{8}x.
y=x+72-\frac{31}{8}xy+4z
Разделите 93x на 24, чтобы получить \frac{31}{8}x.
x+72-\frac{31}{8}xy+4z=y
Поменяйте стороны местами, чтобы все переменные члены находились в левой части.
x-\frac{31}{8}xy+4z=y-72
Вычтите 72 из обеих частей уравнения.
x-\frac{31}{8}xy=y-72-4z
Вычтите 4z из обеих частей уравнения.
\left(1-\frac{31}{8}y\right)x=y-72-4z
Объедините все члены, содержащие x.
\left(-\frac{31y}{8}+1\right)x=y-4z-72
Уравнение имеет стандартный вид.
\frac{\left(-\frac{31y}{8}+1\right)x}{-\frac{31y}{8}+1}=\frac{y-4z-72}{-\frac{31y}{8}+1}
Разделите обе части на 1-\frac{31}{8}y.
x=\frac{y-4z-72}{-\frac{31y}{8}+1}
Деление на 1-\frac{31}{8}y аннулирует операцию умножения на 1-\frac{31}{8}y.
x=\frac{8\left(y-4z-72\right)}{8-31y}
Разделите y-72-4z на 1-\frac{31}{8}y.
y=x+72-\frac{31}{8}xy+4z
Разделите 93x на 24, чтобы получить \frac{31}{8}x.
y+\frac{31}{8}xy=x+72+4z
Прибавьте \frac{31}{8}xy к обеим частям.
\left(1+\frac{31}{8}x\right)y=x+72+4z
Объедините все члены, содержащие y.
\left(\frac{31x}{8}+1\right)y=x+4z+72
Уравнение имеет стандартный вид.
\frac{\left(\frac{31x}{8}+1\right)y}{\frac{31x}{8}+1}=\frac{x+4z+72}{\frac{31x}{8}+1}
Разделите обе части на 1+\frac{31}{8}x.
y=\frac{x+4z+72}{\frac{31x}{8}+1}
Деление на 1+\frac{31}{8}x аннулирует операцию умножения на 1+\frac{31}{8}x.
y=\frac{8\left(x+4z+72\right)}{31x+8}
Разделите x+72+4z на 1+\frac{31}{8}x.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}