Перейти к основному содержанию
Разложить на множители
Tick mark Image
Вычислить
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

a+b=-1 ab=1\left(-2\right)=-2
Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: y^{2}+ay+by-2. Чтобы найти a и b, настройте систему на ее устранение.
a=-2 b=1
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Единственная такая пара является решением системы.
\left(y^{2}-2y\right)+\left(y-2\right)
Перепишите y^{2}-y-2 как \left(y^{2}-2y\right)+\left(y-2\right).
y\left(y-2\right)+y-2
Вынесите за скобки y в y^{2}-2y.
\left(y-2\right)\left(y+1\right)
Вынесите за скобки общий член y-2, используя свойство дистрибутивности.
y^{2}-y-2=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
y=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
y=\frac{-\left(-1\right)±\sqrt{1+8}}{2}
Умножьте -4 на -2.
y=\frac{-\left(-1\right)±\sqrt{9}}{2}
Прибавьте 1 к 8.
y=\frac{-\left(-1\right)±3}{2}
Извлеките квадратный корень из 9.
y=\frac{1±3}{2}
Число, противоположное -1, равно 1.
y=\frac{4}{2}
Решите уравнение y=\frac{1±3}{2} при условии, что ± — плюс. Прибавьте 1 к 3.
y=2
Разделите 4 на 2.
y=-\frac{2}{2}
Решите уравнение y=\frac{1±3}{2} при условии, что ± — минус. Вычтите 3 из 1.
y=-1
Разделите -2 на 2.
y^{2}-y-2=\left(y-2\right)\left(y-\left(-1\right)\right)
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте 2 вместо x_{1} и -1 вместо x_{2}.
y^{2}-y-2=\left(y-2\right)\left(y+1\right)
Упростите все выражения типа p-\left(-q\right) до выражений типа p+q.