Найдите x
x=-2
x=8
График
Викторина
Quadratic Equation
x(x-8)+2(x-8) = 0
Поделиться
Скопировано в буфер обмена
x^{2}-8x+2\left(x-8\right)=0
Чтобы умножить x на x-8, используйте свойство дистрибутивности.
x^{2}-8x+2x-16=0
Чтобы умножить 2 на x-8, используйте свойство дистрибутивности.
x^{2}-6x-16=0
Объедините -8x и 2x, чтобы получить -6x.
a+b=-6 ab=-16
Чтобы решить уравнение, фактор x^{2}-6x-16 с помощью формулы x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Чтобы найти a и b, настройте систему на ее устранение.
1,-16 2,-8 4,-4
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары целых -16.
1-16=-15 2-8=-6 4-4=0
Вычислите сумму для каждой пары.
a=-8 b=2
Решение — это пара значений, сумма которых равна -6.
\left(x-8\right)\left(x+2\right)
Перезапишите разложенное на множители выражение \left(x+a\right)\left(x+b\right) с использованием полученных значений.
x=8 x=-2
Чтобы найти решения для уравнений, решите x-8=0 и x+2=0у.
x^{2}-8x+2\left(x-8\right)=0
Чтобы умножить x на x-8, используйте свойство дистрибутивности.
x^{2}-8x+2x-16=0
Чтобы умножить 2 на x-8, используйте свойство дистрибутивности.
x^{2}-6x-16=0
Объедините -8x и 2x, чтобы получить -6x.
a+b=-6 ab=1\left(-16\right)=-16
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: x^{2}+ax+bx-16. Чтобы найти a и b, настройте систему на ее устранение.
1,-16 2,-8 4,-4
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары целых -16.
1-16=-15 2-8=-6 4-4=0
Вычислите сумму для каждой пары.
a=-8 b=2
Решение — это пара значений, сумма которых равна -6.
\left(x^{2}-8x\right)+\left(2x-16\right)
Перепишите x^{2}-6x-16 как \left(x^{2}-8x\right)+\left(2x-16\right).
x\left(x-8\right)+2\left(x-8\right)
Разложите x в первом и 2 в второй группе.
\left(x-8\right)\left(x+2\right)
Вынесите за скобки общий член x-8, используя свойство дистрибутивности.
x=8 x=-2
Чтобы найти решения для уравнений, решите x-8=0 и x+2=0у.
x^{2}-8x+2\left(x-8\right)=0
Чтобы умножить x на x-8, используйте свойство дистрибутивности.
x^{2}-8x+2x-16=0
Чтобы умножить 2 на x-8, используйте свойство дистрибутивности.
x^{2}-6x-16=0
Объедините -8x и 2x, чтобы получить -6x.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-16\right)}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, -6 вместо b и -16 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-16\right)}}{2}
Возведите -6 в квадрат.
x=\frac{-\left(-6\right)±\sqrt{36+64}}{2}
Умножьте -4 на -16.
x=\frac{-\left(-6\right)±\sqrt{100}}{2}
Прибавьте 36 к 64.
x=\frac{-\left(-6\right)±10}{2}
Извлеките квадратный корень из 100.
x=\frac{6±10}{2}
Число, противоположное -6, равно 6.
x=\frac{16}{2}
Решите уравнение x=\frac{6±10}{2} при условии, что ± — плюс. Прибавьте 6 к 10.
x=8
Разделите 16 на 2.
x=-\frac{4}{2}
Решите уравнение x=\frac{6±10}{2} при условии, что ± — минус. Вычтите 10 из 6.
x=-2
Разделите -4 на 2.
x=8 x=-2
Уравнение решено.
x^{2}-8x+2\left(x-8\right)=0
Чтобы умножить x на x-8, используйте свойство дистрибутивности.
x^{2}-8x+2x-16=0
Чтобы умножить 2 на x-8, используйте свойство дистрибутивности.
x^{2}-6x-16=0
Объедините -8x и 2x, чтобы получить -6x.
x^{2}-6x=16
Прибавьте 16 к обеим частям. Если прибавить к любому числу ноль, то это число не изменится.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
Деление -6, коэффициент x термина, 2 для получения -3. Затем добавьте квадрат -3 к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
x^{2}-6x+9=16+9
Возведите -3 в квадрат.
x^{2}-6x+9=25
Прибавьте 16 к 9.
\left(x-3\right)^{2}=25
Коэффициент x^{2}-6x+9. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Извлеките квадратный корень из обеих частей уравнения.
x-3=5 x-3=-5
Упростите.
x=8 x=-2
Прибавьте 3 к обеим частям уравнения.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}