Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: x^{2}+ax+bx-12. Чтобы найти a и b, настройте систему для решения.
a+b=-4 ab=1\left(-12\right)=-12
Так как ab отрицательный, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары, содержащие -12 продукта.
1,-12 2,-6 3,-4
Вычислите сумму для каждой пары.
1-12=-11 2-6=-4 3-4=-1
Решение — это пара значений, сумма которых равна -4.
a=-6 b=2
Перепишите x^{2}-4x-12 как \left(x^{2}-6x\right)+\left(2x-12\right).
\left(x^{2}-6x\right)+\left(2x-12\right)
Вынесите за скобки x в первой и 2 во второй группе.
x\left(x-6\right)+2\left(x-6\right)
Вынесите за скобки общий член x-6, используя свойство дистрибутивности.
Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: x^{2}+ax+bx-12. Чтобы найти a и b, настройте систему для решения.
1,-12 2,-6 3,-4
Так как ab отрицательный, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары, содержащие -12 продукта.
1-12=-11 2-6=-4 3-4=-1
Вычислите сумму для каждой пары.
a=-6 b=2
Решение — это пара значений, сумма которых равна -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Перепишите x^{2}-4x-12 как \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Вынесите за скобки x в первой и 2 во второй группе.
\left(x-6\right)\left(x+2\right)
Вынесите за скобки общий член x-6, используя свойство дистрибутивности.
x^{2}-4x-12=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте 6 вместо x_{1} и -2 вместо x_{2}.
x^{2}-4x-12=\left(x-6\right)\left(x+2\right)
Упростите все выражения типа p-\left(-q\right) до выражений типа p+q.