Перейти к основному содержанию
Найдите x (комплексное решение)
Tick mark Image
Найдите x
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

±51,±17,±3,±1
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член 51, а q делит старший коэффициент 1. Перечислите всех кандидатов \frac{p}{q}.
x=-3
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
x^{2}-2x+17=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите x^{3}+x^{2}+11x+51 на x+3, чтобы получить x^{2}-2x+17. Устраните уравнение, в котором результат равняется 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 17}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замените в формуле корней квадратного уравнения a на 1, b на -2 и c на 17.
x=\frac{2±\sqrt{-64}}{2}
Выполните арифметические операции.
x=1-4i x=1+4i
Решение x^{2}-2x+17=0 уравнений, когда ±-плюс и когда ± — минус.
x=-3 x=1-4i x=1+4i
Перечислите все найденные решения.
±51,±17,±3,±1
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член 51, а q делит старший коэффициент 1. Перечислите всех кандидатов \frac{p}{q}.
x=-3
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
x^{2}-2x+17=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите x^{3}+x^{2}+11x+51 на x+3, чтобы получить x^{2}-2x+17. Устраните уравнение, в котором результат равняется 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 17}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замените в формуле корней квадратного уравнения a на 1, b на -2 и c на 17.
x=\frac{2±\sqrt{-64}}{2}
Выполните арифметические операции.
x\in \emptyset
Решения нет, так как квадратный корень из отрицательного числа не существует в области вещественных чисел.
x=-3
Перечислите все найденные решения.