Перейти к основному содержанию
Найдите x
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
Вычтите \frac{81}{4} из обеих частей уравнения.
x^{2}+5x-14=0
Вычтите \frac{81}{4} из \frac{25}{4}, чтобы получить -14.
a+b=5 ab=-14
Чтобы решить уравнение, фактор x^{2}+5x-14 с помощью формулы x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Чтобы найти a и b, настройте систему на ее устранение.
-1,14 -2,7
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b положительный, положительное число имеет больше абсолютное значение, чем отрицательное. Перечислите все такие пары целых -14.
-1+14=13 -2+7=5
Вычислите сумму для каждой пары.
a=-2 b=7
Решение — это пара значений, сумма которых равна 5.
\left(x-2\right)\left(x+7\right)
Перезапишите разложенное на множители выражение \left(x+a\right)\left(x+b\right) с использованием полученных значений.
x=2 x=-7
Чтобы найти решения для уравнений, решите x-2=0 и x+7=0у.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
Вычтите \frac{81}{4} из обеих частей уравнения.
x^{2}+5x-14=0
Вычтите \frac{81}{4} из \frac{25}{4}, чтобы получить -14.
a+b=5 ab=1\left(-14\right)=-14
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: x^{2}+ax+bx-14. Чтобы найти a и b, настройте систему на ее устранение.
-1,14 -2,7
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b положительный, положительное число имеет больше абсолютное значение, чем отрицательное. Перечислите все такие пары целых -14.
-1+14=13 -2+7=5
Вычислите сумму для каждой пары.
a=-2 b=7
Решение — это пара значений, сумма которых равна 5.
\left(x^{2}-2x\right)+\left(7x-14\right)
Перепишите x^{2}+5x-14 как \left(x^{2}-2x\right)+\left(7x-14\right).
x\left(x-2\right)+7\left(x-2\right)
Разложите x в первом и 7 в второй группе.
\left(x-2\right)\left(x+7\right)
Вынесите за скобки общий член x-2, используя свойство дистрибутивности.
x=2 x=-7
Чтобы найти решения для уравнений, решите x-2=0 и x+7=0у.
x^{2}+5x+\frac{25}{4}=\frac{81}{4}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=\frac{81}{4}-\frac{81}{4}
Вычтите \frac{81}{4} из обеих частей уравнения.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
Если из \frac{81}{4} вычесть такое же значение, то получится 0.
x^{2}+5x-14=0
Вычтите \frac{81}{4} из \frac{25}{4}. Для этого найдите общий знаменатель и разность числителей. Затем, если это возможно, сократите дробь до младших членов.
x=\frac{-5±\sqrt{5^{2}-4\left(-14\right)}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, 5 вместо b и -14 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-14\right)}}{2}
Возведите 5 в квадрат.
x=\frac{-5±\sqrt{25+56}}{2}
Умножьте -4 на -14.
x=\frac{-5±\sqrt{81}}{2}
Прибавьте 25 к 56.
x=\frac{-5±9}{2}
Извлеките квадратный корень из 81.
x=\frac{4}{2}
Решите уравнение x=\frac{-5±9}{2} при условии, что ± — плюс. Прибавьте -5 к 9.
x=2
Разделите 4 на 2.
x=-\frac{14}{2}
Решите уравнение x=\frac{-5±9}{2} при условии, что ± — минус. Вычтите 9 из -5.
x=-7
Разделите -14 на 2.
x=2 x=-7
Уравнение решено.
\left(x+\frac{5}{2}\right)^{2}=\frac{81}{4}
Коэффициент x^{2}+5x+\frac{25}{4}. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Извлеките квадратный корень из обеих частей уравнения.
x+\frac{5}{2}=\frac{9}{2} x+\frac{5}{2}=-\frac{9}{2}
Упростите.
x=2 x=-7
Вычтите \frac{5}{2} из обеих частей уравнения.