Перейти к основному содержанию
Разложить на множители
Tick mark Image
Вычислить
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

a+b=3 ab=1\left(-18\right)=-18
Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: x^{2}+ax+bx-18. Чтобы найти a и b, настройте систему на ее устранение.
-1,18 -2,9 -3,6
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b положительный, положительное число имеет больше абсолютное значение, чем отрицательное. Перечислите все такие пары целых -18.
-1+18=17 -2+9=7 -3+6=3
Вычислите сумму для каждой пары.
a=-3 b=6
Решение — это пара значений, сумма которых равна 3.
\left(x^{2}-3x\right)+\left(6x-18\right)
Перепишите x^{2}+3x-18 как \left(x^{2}-3x\right)+\left(6x-18\right).
x\left(x-3\right)+6\left(x-3\right)
Разложите x в первом и 6 в второй группе.
\left(x-3\right)\left(x+6\right)
Вынесите за скобки общий член x-3, используя свойство дистрибутивности.
x^{2}+3x-18=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-18\right)}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-3±\sqrt{9-4\left(-18\right)}}{2}
Возведите 3 в квадрат.
x=\frac{-3±\sqrt{9+72}}{2}
Умножьте -4 на -18.
x=\frac{-3±\sqrt{81}}{2}
Прибавьте 9 к 72.
x=\frac{-3±9}{2}
Извлеките квадратный корень из 81.
x=\frac{6}{2}
Решите уравнение x=\frac{-3±9}{2} при условии, что ± — плюс. Прибавьте -3 к 9.
x=3
Разделите 6 на 2.
x=-\frac{12}{2}
Решите уравнение x=\frac{-3±9}{2} при условии, что ± — минус. Вычтите 9 из -3.
x=-6
Разделите -12 на 2.
x^{2}+3x-18=\left(x-3\right)\left(x-\left(-6\right)\right)
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте 3 вместо x_{1} и -6 вместо x_{2}.
x^{2}+3x-18=\left(x-3\right)\left(x+6\right)
Упростите все выражения типа p-\left(-q\right) до выражений типа p+q.