Найдите x (комплексное решение)
x=\sqrt{5}-1\approx 1,236067977
x=-\left(\sqrt{5}+1\right)\approx -3,236067977
Найдите x
x=\sqrt{5}-1\approx 1,236067977
x=-\sqrt{5}-1\approx -3,236067977
График
Поделиться
Скопировано в буфер обмена
x^{2}+2x+1=5
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x^{2}+2x+1-5=5-5
Вычтите 5 из обеих частей уравнения.
x^{2}+2x+1-5=0
Если из 5 вычесть такое же значение, то получится 0.
x^{2}+2x-4=0
Вычтите 5 из 1.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, 2 вместо b и -4 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Возведите 2 в квадрат.
x=\frac{-2±\sqrt{4+16}}{2}
Умножьте -4 на -4.
x=\frac{-2±\sqrt{20}}{2}
Прибавьте 4 к 16.
x=\frac{-2±2\sqrt{5}}{2}
Извлеките квадратный корень из 20.
x=\frac{2\sqrt{5}-2}{2}
Решите уравнение x=\frac{-2±2\sqrt{5}}{2} при условии, что ± — плюс. Прибавьте -2 к 2\sqrt{5}.
x=\sqrt{5}-1
Разделите -2+2\sqrt{5} на 2.
x=\frac{-2\sqrt{5}-2}{2}
Решите уравнение x=\frac{-2±2\sqrt{5}}{2} при условии, что ± — минус. Вычтите 2\sqrt{5} из -2.
x=-\sqrt{5}-1
Разделите -2-2\sqrt{5} на 2.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Уравнение решено.
\left(x+1\right)^{2}=5
Коэффициент x^{2}+2x+1. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Извлеките квадратный корень из обеих частей уравнения.
x+1=\sqrt{5} x+1=-\sqrt{5}
Упростите.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Вычтите 1 из обеих частей уравнения.
x^{2}+2x+1=5
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x^{2}+2x+1-5=5-5
Вычтите 5 из обеих частей уравнения.
x^{2}+2x+1-5=0
Если из 5 вычесть такое же значение, то получится 0.
x^{2}+2x-4=0
Вычтите 5 из 1.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, 2 вместо b и -4 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Возведите 2 в квадрат.
x=\frac{-2±\sqrt{4+16}}{2}
Умножьте -4 на -4.
x=\frac{-2±\sqrt{20}}{2}
Прибавьте 4 к 16.
x=\frac{-2±2\sqrt{5}}{2}
Извлеките квадратный корень из 20.
x=\frac{2\sqrt{5}-2}{2}
Решите уравнение x=\frac{-2±2\sqrt{5}}{2} при условии, что ± — плюс. Прибавьте -2 к 2\sqrt{5}.
x=\sqrt{5}-1
Разделите -2+2\sqrt{5} на 2.
x=\frac{-2\sqrt{5}-2}{2}
Решите уравнение x=\frac{-2±2\sqrt{5}}{2} при условии, что ± — минус. Вычтите 2\sqrt{5} из -2.
x=-\sqrt{5}-1
Разделите -2-2\sqrt{5} на 2.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Уравнение решено.
\left(x+1\right)^{2}=5
Коэффициент x^{2}+2x+1. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Извлеките квадратный корень из обеих частей уравнения.
x+1=\sqrt{5} x+1=-\sqrt{5}
Упростите.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Вычтите 1 из обеих частей уравнения.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}