Разложить на множители
\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x^{2}+xy+y^{2}\right)
Вычислить
\left(a^{2}-b^{2}\right)\left(x^{3}-y^{3}\right)
Поделиться
Скопировано в буфер обмена
x^{3}\left(a^{2}-b^{2}\right)-y^{3}\left(a^{2}-b^{2}\right)
Выполните a^{2}x^{3}-x^{3}b^{2}-a^{2}y^{3}+y^{3}b^{2}=\left(a^{2}x^{3}-x^{3}b^{2}\right)+\left(-a^{2}y^{3}+y^{3}b^{2}\right)ную группировку и выложите x^{3} в первом и -y^{3} в второй группе.
\left(a^{2}-b^{2}\right)\left(x^{3}-y^{3}\right)
Вынесите за скобки общий член a^{2}-b^{2}, используя свойство дистрибутивности.
\left(a-b\right)\left(a+b\right)
Учтите a^{2}-b^{2}. Разность квадратов можно разложить с помощью правила: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
Учтите x^{3}-y^{3}. Разница между кубами может быть разрешается с помощью правила: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a-b\right)\left(a+b\right)\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
Перепишите полное разложенное на множители выражение.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}