Разложить на множители
\left(a-6\right)\left(a+2\right)
Вычислить
\left(a-6\right)\left(a+2\right)
Викторина
Polynomial
a ^ { 2 } - 4 a - 12
Поделиться
Скопировано в буфер обмена
p+q=-4 pq=1\left(-12\right)=-12
Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: a^{2}+pa+qa-12. Чтобы найти p и q, настройте систему на ее устранение.
1,-12 2,-6 3,-4
Так как pq является отрицательным, p и q имеют противоположные знаки. Поскольку результат выражения p+q отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары целых -12.
1-12=-11 2-6=-4 3-4=-1
Вычислите сумму для каждой пары.
p=-6 q=2
Решение — это пара значений, сумма которых равна -4.
\left(a^{2}-6a\right)+\left(2a-12\right)
Перепишите a^{2}-4a-12 как \left(a^{2}-6a\right)+\left(2a-12\right).
a\left(a-6\right)+2\left(a-6\right)
Разложите a в первом и 2 в второй группе.
\left(a-6\right)\left(a+2\right)
Вынесите за скобки общий член a-6, используя свойство дистрибутивности.
a^{2}-4a-12=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
a=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Возведите -4 в квадрат.
a=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Умножьте -4 на -12.
a=\frac{-\left(-4\right)±\sqrt{64}}{2}
Прибавьте 16 к 48.
a=\frac{-\left(-4\right)±8}{2}
Извлеките квадратный корень из 64.
a=\frac{4±8}{2}
Число, противоположное -4, равно 4.
a=\frac{12}{2}
Решите уравнение a=\frac{4±8}{2} при условии, что ± — плюс. Прибавьте 4 к 8.
a=6
Разделите 12 на 2.
a=-\frac{4}{2}
Решите уравнение a=\frac{4±8}{2} при условии, что ± — минус. Вычтите 8 из 4.
a=-2
Разделите -4 на 2.
a^{2}-4a-12=\left(a-6\right)\left(a-\left(-2\right)\right)
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте 6 вместо x_{1} и -2 вместо x_{2}.
a^{2}-4a-12=\left(a-6\right)\left(a+2\right)
Упростите все выражения типа p-\left(-q\right) до выражений типа p+q.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}