Найдите V
V=\frac{1855\pi c^{2}m^{3}}{3}
Найдите c (комплексное решение)
\left\{\begin{matrix}c=-\frac{m^{-\frac{3}{2}}\sqrt{\frac{5565V}{\pi }}}{1855}\text{; }c=\frac{m^{-\frac{3}{2}}\sqrt{\frac{5565V}{\pi }}}{1855}\text{, }&m\neq 0\\c\in \mathrm{C}\text{, }&V=0\text{ and }m=0\end{matrix}\right,
Найдите c
\left\{\begin{matrix}c=\frac{\sqrt{\frac{5565V}{\pi m^{3}}}}{1855}\text{; }c=-\frac{\sqrt{\frac{5565V}{\pi m^{3}}}}{1855}\text{, }&\left(V\geq 0\text{ and }m>0\right)\text{ or }\left(V\leq 0\text{ and }m<0\right)\\c\in \mathrm{R}\text{, }&V=0\text{ and }m=0\end{matrix}\right,
Поделиться
Скопировано в буфер обмена
V=\frac{1}{3}\pi \times 35c^{2}m^{2}\times 53m
Перемножьте c и c, чтобы получить c^{2}.
V=\frac{1}{3}\pi \times 35c^{2}m^{3}\times 53
Чтобы перемножить степени с одинаковым основанием, сложите их показатели. Сложите 2 и 1, чтобы получить 3.
V=\frac{35}{3}\pi c^{2}m^{3}\times 53
Перемножьте \frac{1}{3} и 35, чтобы получить \frac{35}{3}.
V=\frac{1855}{3}\pi c^{2}m^{3}
Перемножьте \frac{35}{3} и 53, чтобы получить \frac{1855}{3}.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}