Найдите x
x=-\frac{31y}{9}+\frac{875}{3}
Найдите y
y=\frac{2625-9x}{31}
График
Поделиться
Скопировано в буфер обмена
80y+120x+\frac{1000}{3}y-35000=0
Перемножьте 500 и \frac{2}{3}, чтобы получить \frac{1000}{3}.
\frac{1240}{3}y+120x-35000=0
Объедините 80y и \frac{1000}{3}y, чтобы получить \frac{1240}{3}y.
120x-35000=-\frac{1240}{3}y
Вычтите \frac{1240}{3}y из обеих частей уравнения. Если вычесть любое число из нуля, то получится его отрицательный эквивалент.
120x=-\frac{1240}{3}y+35000
Прибавьте 35000 к обеим частям.
120x=-\frac{1240y}{3}+35000
Уравнение имеет стандартный вид.
\frac{120x}{120}=\frac{-\frac{1240y}{3}+35000}{120}
Разделите обе части на 120.
x=\frac{-\frac{1240y}{3}+35000}{120}
Деление на 120 аннулирует операцию умножения на 120.
x=-\frac{31y}{9}+\frac{875}{3}
Разделите -\frac{1240y}{3}+35000 на 120.
80y+120x+\frac{1000}{3}y-35000=0
Перемножьте 500 и \frac{2}{3}, чтобы получить \frac{1000}{3}.
\frac{1240}{3}y+120x-35000=0
Объедините 80y и \frac{1000}{3}y, чтобы получить \frac{1240}{3}y.
\frac{1240}{3}y-35000=-120x
Вычтите 120x из обеих частей уравнения. Если вычесть любое число из нуля, то получится его отрицательный эквивалент.
\frac{1240}{3}y=-120x+35000
Прибавьте 35000 к обеим частям.
\frac{1240}{3}y=35000-120x
Уравнение имеет стандартный вид.
\frac{\frac{1240}{3}y}{\frac{1240}{3}}=\frac{35000-120x}{\frac{1240}{3}}
Разделите обе стороны уравнения на \frac{1240}{3}, что равносильно умножению обеих частей на обратную дробь.
y=\frac{35000-120x}{\frac{1240}{3}}
Деление на \frac{1240}{3} аннулирует операцию умножения на \frac{1240}{3}.
y=\frac{2625-9x}{31}
Разделите -120x+35000 на \frac{1240}{3}, умножив -120x+35000 на величину, обратную \frac{1240}{3}.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}