Решение для p
p\in \left(0,4\right)
Поделиться
Скопировано в буфер обмена
4p\left(-p\right)+16p>0
Чтобы умножить 4p на -p+4, используйте свойство дистрибутивности.
-4pp+16p>0
Перемножьте 4 и -1, чтобы получить -4.
-4p^{2}+16p>0
Перемножьте p и p, чтобы получить p^{2}.
4p^{2}-16p<0
Умножьте неравенство на -1, чтобы коэффициент при наивысшей степени в -4p^{2}+16p был положительным. Так как -1 является отрицательным, направление неравенства изменяется.
4p\left(p-4\right)<0
Вынесите p за скобки.
p>0 p-4<0
Чтобы произведение было отрицательным, p и p-4 должны иметь противоположные знаки. Рассмотрите, когда p положительное и p-4 отрицательно.
p\in \left(0,4\right)
Решение, которое удовлетворяет обоим неравенствам: p\in \left(0,4\right).
p-4>0 p<0
Рассмотрите, когда p-4 положительное и p отрицательно.
p\in \emptyset
Это неверно для любого p.
p\in \left(0,4\right)
Окончательное решение — это объединение полученных решений.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}