Перейти к основному содержанию
Найдите x (комплексное решение)
Tick mark Image
Найдите y (комплексное решение)
Tick mark Image
Найдите x
Tick mark Image
Найдите y
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

4x^{2}-2yx+25=4x^{2}-20x+25
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(2x-5\right)^{2}.
4x^{2}-2yx+25-4x^{2}=-20x+25
Вычтите 4x^{2} из обеих частей уравнения.
-2yx+25=-20x+25
Объедините 4x^{2} и -4x^{2}, чтобы получить 0.
-2yx+25+20x=25
Прибавьте 20x к обеим частям.
-2yx+20x=25-25
Вычтите 25 из обеих частей уравнения.
-2yx+20x=0
Вычтите 25 из 25, чтобы получить 0.
\left(-2y+20\right)x=0
Объедините все члены, содержащие x.
\left(20-2y\right)x=0
Уравнение имеет стандартный вид.
x=0
Разделите 0 на -2y+20.
4x^{2}-2yx+25=4x^{2}-20x+25
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(2x-5\right)^{2}.
-2yx+25=4x^{2}-20x+25-4x^{2}
Вычтите 4x^{2} из обеих частей уравнения.
-2yx+25=-20x+25
Объедините 4x^{2} и -4x^{2}, чтобы получить 0.
-2yx=-20x+25-25
Вычтите 25 из обеих частей уравнения.
-2yx=-20x
Вычтите 25 из 25, чтобы получить 0.
\left(-2x\right)y=-20x
Уравнение имеет стандартный вид.
\frac{\left(-2x\right)y}{-2x}=-\frac{20x}{-2x}
Разделите обе части на -2x.
y=-\frac{20x}{-2x}
Деление на -2x аннулирует операцию умножения на -2x.
y=10
Разделите -20x на -2x.
4x^{2}-2yx+25=4x^{2}-20x+25
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(2x-5\right)^{2}.
4x^{2}-2yx+25-4x^{2}=-20x+25
Вычтите 4x^{2} из обеих частей уравнения.
-2yx+25=-20x+25
Объедините 4x^{2} и -4x^{2}, чтобы получить 0.
-2yx+25+20x=25
Прибавьте 20x к обеим частям.
-2yx+20x=25-25
Вычтите 25 из обеих частей уравнения.
-2yx+20x=0
Вычтите 25 из 25, чтобы получить 0.
\left(-2y+20\right)x=0
Объедините все члены, содержащие x.
\left(20-2y\right)x=0
Уравнение имеет стандартный вид.
x=0
Разделите 0 на -2y+20.
4x^{2}-2yx+25=4x^{2}-20x+25
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(2x-5\right)^{2}.
-2yx+25=4x^{2}-20x+25-4x^{2}
Вычтите 4x^{2} из обеих частей уравнения.
-2yx+25=-20x+25
Объедините 4x^{2} и -4x^{2}, чтобы получить 0.
-2yx=-20x+25-25
Вычтите 25 из обеих частей уравнения.
-2yx=-20x
Вычтите 25 из 25, чтобы получить 0.
\left(-2x\right)y=-20x
Уравнение имеет стандартный вид.
\frac{\left(-2x\right)y}{-2x}=-\frac{20x}{-2x}
Разделите обе части на -2x.
y=-\frac{20x}{-2x}
Деление на -2x аннулирует операцию умножения на -2x.
y=10
Разделите -20x на -2x.