Перейти к основному содержанию
$3 \exponential{(x)}{2} + 9 x + 6 = 0 $
Найдите x
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

x^{2}+3x+2=0
Разделите обе части на 3.
a+b=3 ab=1\times 2=2
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: x^{2}+ax+bx+2. Чтобы найти a и b, настройте систему для решения.
a=1 b=2
Поскольку ab положительное, a и b имеют одинаковый знак. Так как a+b положительное, a и b являются положительными. Единственная такая пара является решением системы.
\left(x^{2}+x\right)+\left(2x+2\right)
Перепишите x^{2}+3x+2 как \left(x^{2}+x\right)+\left(2x+2\right).
x\left(x+1\right)+2\left(x+1\right)
Вынесите за скобки x в первой и 2 во второй группе.
\left(x+1\right)\left(x+2\right)
Вынесите за скобки общий член x+1, используя свойство дистрибутивности.
x=-1 x=-2
Чтобы найти решения для уравнений, решите x+1=0 и x+2=0.
3x^{2}+9x+6=0
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-9±\sqrt{9^{2}-4\times 3\times 6}}{2\times 3}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 3 вместо a, 9 вместо b и 6 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 3\times 6}}{2\times 3}
Возведите 9 в квадрат.
x=\frac{-9±\sqrt{81-12\times 6}}{2\times 3}
Умножьте -4 на 3.
x=\frac{-9±\sqrt{81-72}}{2\times 3}
Умножьте -12 на 6.
x=\frac{-9±\sqrt{9}}{2\times 3}
Прибавьте 81 к -72.
x=\frac{-9±3}{2\times 3}
Извлеките квадратный корень из 9.
x=\frac{-9±3}{6}
Умножьте 2 на 3.
x=\frac{-6}{6}
Решите уравнение x=\frac{-9±3}{6} при условии, что ± — плюс. Прибавьте -9 к 3.
x=-1
Разделите -6 на 6.
x=\frac{-12}{6}
Решите уравнение x=\frac{-9±3}{6} при условии, что ± — минус. Вычтите 3 из -9.
x=-2
Разделите -12 на 6.
x=-1 x=-2
Уравнение решено.
3x^{2}+9x+6=0
Такие квадратные уравнения, как это, можно решить, дополнив их до полного квадрата. Чтобы можно было дополнить уравнение до полного квадрата, оно должно иметь вид x^{2}+bx=c.
3x^{2}+9x+6-6=-6
Вычтите 6 из обеих частей уравнения.
3x^{2}+9x=-6
Если из 6 вычесть такое же значение, то получится 0.
\frac{3x^{2}+9x}{3}=\frac{-6}{3}
Разделите обе части на 3.
x^{2}+\frac{9}{3}x=\frac{-6}{3}
Деление на 3 аннулирует операцию умножения на 3.
x^{2}+3x=\frac{-6}{3}
Разделите 9 на 3.
x^{2}+3x=-2
Разделите -6 на 3.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-2+\left(\frac{3}{2}\right)^{2}
Разделите 3, коэффициент члена x, на 2, в результате чего получится \frac{3}{2}. Затем добавьте квадрат \frac{3}{2} в обе части уравнения. Это действие сделает левую часть уравнения полным квадратом.
x^{2}+3x+\frac{9}{4}=-2+\frac{9}{4}
Возведите \frac{3}{2} в квадрат путем возведения числителя и знаменателя дроби в квадрат.
x^{2}+3x+\frac{9}{4}=\frac{1}{4}
Прибавьте -2 к \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{1}{4}
Разложите x^{2}+3x+\frac{9}{4} на множители. В общем случае, когда выражение x^{2}+bx+c является полным квадратом, его всегда можно разложить на множители следующим способом: \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Извлеките квадратный корень из обеих частей уравнения.
x+\frac{3}{2}=\frac{1}{2} x+\frac{3}{2}=-\frac{1}{2}
Упростите.
x=-1 x=-2
Вычтите \frac{3}{2} из обеих частей уравнения.