Найдите x
x=-2
x=-1
График
Викторина
Polynomial
3 { x }^{ 2 } +9x+6=0
Поделиться
Скопировано в буфер обмена
x^{2}+3x+2=0
Разделите обе части на 3.
a+b=3 ab=1\times 2=2
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: x^{2}+ax+bx+2. Чтобы найти a и b, настройте систему на ее устранение.
a=1 b=2
Так как ab является положительным, a и b имеют один и тот же знак. Так как a+b является положительным, a, а b являются положительными. Единственная такая пара является решением системы.
\left(x^{2}+x\right)+\left(2x+2\right)
Перепишите x^{2}+3x+2 как \left(x^{2}+x\right)+\left(2x+2\right).
x\left(x+1\right)+2\left(x+1\right)
Разложите x в первом и 2 в второй группе.
\left(x+1\right)\left(x+2\right)
Вынесите за скобки общий член x+1, используя свойство дистрибутивности.
x=-1 x=-2
Чтобы найти решения для уравнений, решите x+1=0 и x+2=0у.
3x^{2}+9x+6=0
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-9±\sqrt{9^{2}-4\times 3\times 6}}{2\times 3}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 3 вместо a, 9 вместо b и 6 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 3\times 6}}{2\times 3}
Возведите 9 в квадрат.
x=\frac{-9±\sqrt{81-12\times 6}}{2\times 3}
Умножьте -4 на 3.
x=\frac{-9±\sqrt{81-72}}{2\times 3}
Умножьте -12 на 6.
x=\frac{-9±\sqrt{9}}{2\times 3}
Прибавьте 81 к -72.
x=\frac{-9±3}{2\times 3}
Извлеките квадратный корень из 9.
x=\frac{-9±3}{6}
Умножьте 2 на 3.
x=-\frac{6}{6}
Решите уравнение x=\frac{-9±3}{6} при условии, что ± — плюс. Прибавьте -9 к 3.
x=-1
Разделите -6 на 6.
x=-\frac{12}{6}
Решите уравнение x=\frac{-9±3}{6} при условии, что ± — минус. Вычтите 3 из -9.
x=-2
Разделите -12 на 6.
x=-1 x=-2
Уравнение решено.
3x^{2}+9x+6=0
Такие квадратные уравнения, как это, можно решить, дополнив их до полного квадрата. Чтобы можно было дополнить уравнение до полного квадрата, оно должно иметь вид x^{2}+bx=c.
3x^{2}+9x+6-6=-6
Вычтите 6 из обеих частей уравнения.
3x^{2}+9x=-6
Если из 6 вычесть такое же значение, то получится 0.
\frac{3x^{2}+9x}{3}=-\frac{6}{3}
Разделите обе части на 3.
x^{2}+\frac{9}{3}x=-\frac{6}{3}
Деление на 3 аннулирует операцию умножения на 3.
x^{2}+3x=-\frac{6}{3}
Разделите 9 на 3.
x^{2}+3x=-2
Разделите -6 на 3.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-2+\left(\frac{3}{2}\right)^{2}
Деление 3, коэффициент x термина, 2 для получения \frac{3}{2}. Затем добавьте квадрат \frac{3}{2} к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
x^{2}+3x+\frac{9}{4}=-2+\frac{9}{4}
Возведите \frac{3}{2} в квадрат путем возведения числителя и знаменателя дроби в квадрат.
x^{2}+3x+\frac{9}{4}=\frac{1}{4}
Прибавьте -2 к \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{1}{4}
Коэффициент x^{2}+3x+\frac{9}{4}. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Извлеките квадратный корень из обеих частей уравнения.
x+\frac{3}{2}=\frac{1}{2} x+\frac{3}{2}=-\frac{1}{2}
Упростите.
x=-1 x=-2
Вычтите \frac{3}{2} из обеих частей уравнения.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}