Перейти к основному содержанию
Разложить на множители
Tick mark Image
Вычислить
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

a+b=7 ab=2\times 5=10
Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: 2x^{2}+ax+bx+5. Чтобы найти a и b, настройте систему на ее устранение.
1,10 2,5
Так как ab является положительным, a и b имеют один и тот же знак. Так как a+b является положительным, a, а b являются положительными. Перечислите все такие пары целых 10.
1+10=11 2+5=7
Вычислите сумму для каждой пары.
a=2 b=5
Решение — это пара значений, сумма которых равна 7.
\left(2x^{2}+2x\right)+\left(5x+5\right)
Перепишите 2x^{2}+7x+5 как \left(2x^{2}+2x\right)+\left(5x+5\right).
2x\left(x+1\right)+5\left(x+1\right)
Разложите 2x в первом и 5 в второй группе.
\left(x+1\right)\left(2x+5\right)
Вынесите за скобки общий член x+1, используя свойство дистрибутивности.
2x^{2}+7x+5=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
Возведите 7 в квадрат.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
Умножьте -4 на 2.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
Умножьте -8 на 5.
x=\frac{-7±\sqrt{9}}{2\times 2}
Прибавьте 49 к -40.
x=\frac{-7±3}{2\times 2}
Извлеките квадратный корень из 9.
x=\frac{-7±3}{4}
Умножьте 2 на 2.
x=-\frac{4}{4}
Решите уравнение x=\frac{-7±3}{4} при условии, что ± — плюс. Прибавьте -7 к 3.
x=-1
Разделите -4 на 4.
x=-\frac{10}{4}
Решите уравнение x=\frac{-7±3}{4} при условии, что ± — минус. Вычтите 3 из -7.
x=-\frac{5}{2}
Привести дробь \frac{-10}{4} к несократимому виду, разделив числитель и знаменатель на 2.
2x^{2}+7x+5=2\left(x-\left(-1\right)\right)\left(x-\left(-\frac{5}{2}\right)\right)
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте -1 вместо x_{1} и -\frac{5}{2} вместо x_{2}.
2x^{2}+7x+5=2\left(x+1\right)\left(x+\frac{5}{2}\right)
Упростите все выражения типа p-\left(-q\right) до выражений типа p+q.
2x^{2}+7x+5=2\left(x+1\right)\times \frac{2x+5}{2}
Прибавьте \frac{5}{2} к x, найдя общий знаменатель и сложив числители. Затем, если это возможно, сократите дробь до младших членов.
2x^{2}+7x+5=\left(x+1\right)\left(2x+5\right)
Сократите наибольший общий делитель 2 в 2 и 2.