Разложить на множители
2\left(x+2\right)\left(x+6\right)
Вычислить
2\left(x+2\right)\left(x+6\right)
График
Поделиться
Скопировано в буфер обмена
2\left(x^{2}+8x+12\right)
Вынесите 2 за скобки.
a+b=8 ab=1\times 12=12
Учтите x^{2}+8x+12. Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: x^{2}+ax+bx+12. Чтобы найти a и b, настройте систему на ее устранение.
1,12 2,6 3,4
Так как ab является положительным, a и b имеют один и тот же знак. Так как a+b является положительным, a, а b являются положительными. Перечислите все такие пары целых 12.
1+12=13 2+6=8 3+4=7
Вычислите сумму для каждой пары.
a=2 b=6
Решение — это пара значений, сумма которых равна 8.
\left(x^{2}+2x\right)+\left(6x+12\right)
Перепишите x^{2}+8x+12 как \left(x^{2}+2x\right)+\left(6x+12\right).
x\left(x+2\right)+6\left(x+2\right)
Разложите x в первом и 6 в второй группе.
\left(x+2\right)\left(x+6\right)
Вынесите за скобки общий член x+2, используя свойство дистрибутивности.
2\left(x+2\right)\left(x+6\right)
Перепишите полное разложенное на множители выражение.
2x^{2}+16x+24=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\times 2\times 24}}{2\times 2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-16±\sqrt{256-4\times 2\times 24}}{2\times 2}
Возведите 16 в квадрат.
x=\frac{-16±\sqrt{256-8\times 24}}{2\times 2}
Умножьте -4 на 2.
x=\frac{-16±\sqrt{256-192}}{2\times 2}
Умножьте -8 на 24.
x=\frac{-16±\sqrt{64}}{2\times 2}
Прибавьте 256 к -192.
x=\frac{-16±8}{2\times 2}
Извлеките квадратный корень из 64.
x=\frac{-16±8}{4}
Умножьте 2 на 2.
x=-\frac{8}{4}
Решите уравнение x=\frac{-16±8}{4} при условии, что ± — плюс. Прибавьте -16 к 8.
x=-2
Разделите -8 на 4.
x=-\frac{24}{4}
Решите уравнение x=\frac{-16±8}{4} при условии, что ± — минус. Вычтите 8 из -16.
x=-6
Разделите -24 на 4.
2x^{2}+16x+24=2\left(x-\left(-2\right)\right)\left(x-\left(-6\right)\right)
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте -2 вместо x_{1} и -6 вместо x_{2}.
2x^{2}+16x+24=2\left(x+2\right)\left(x+6\right)
Упростите все выражения типа p-\left(-q\right) до выражений типа p+q.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}