Перейти к основному содержанию
Разложить на множители
Tick mark Image
Вычислить
Tick mark Image

Подобные задачи из результатов поиска в Интернете

Поделиться

factor(2p^{2}-100+7p)
Вычтите 6 из -94, чтобы получить -100.
2p^{2}+7p-100=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
p=\frac{-7±\sqrt{7^{2}-4\times 2\left(-100\right)}}{2\times 2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
p=\frac{-7±\sqrt{49-4\times 2\left(-100\right)}}{2\times 2}
Возведите 7 в квадрат.
p=\frac{-7±\sqrt{49-8\left(-100\right)}}{2\times 2}
Умножьте -4 на 2.
p=\frac{-7±\sqrt{49+800}}{2\times 2}
Умножьте -8 на -100.
p=\frac{-7±\sqrt{849}}{2\times 2}
Прибавьте 49 к 800.
p=\frac{-7±\sqrt{849}}{4}
Умножьте 2 на 2.
p=\frac{\sqrt{849}-7}{4}
Решите уравнение p=\frac{-7±\sqrt{849}}{4} при условии, что ± — плюс. Прибавьте -7 к \sqrt{849}.
p=\frac{-\sqrt{849}-7}{4}
Решите уравнение p=\frac{-7±\sqrt{849}}{4} при условии, что ± — минус. Вычтите \sqrt{849} из -7.
2p^{2}+7p-100=2\left(p-\frac{\sqrt{849}-7}{4}\right)\left(p-\frac{-\sqrt{849}-7}{4}\right)
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте \frac{-7+\sqrt{849}}{4} вместо x_{1} и \frac{-7-\sqrt{849}}{4} вместо x_{2}.
2p^{2}-100+7p
Вычтите 6 из -94, чтобы получить -100.