Найдите x
x=\frac{-\sqrt{33}-3}{4}\approx -2,186140662
x=3
x=\frac{\sqrt{33}-3}{4}\approx 0,686140662
График
Поделиться
Скопировано в буфер обмена
2x^{3}-3x^{2}-12x+9=0
Прибавьте 9 к обеим частям.
±\frac{9}{2},±9,±\frac{3}{2},±3,±\frac{1}{2},±1
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член 9, а q делит старший коэффициент 2. Перечислите всех кандидатов \frac{p}{q}.
x=3
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
2x^{2}+3x-3=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите 2x^{3}-3x^{2}-12x+9 на x-3, чтобы получить 2x^{2}+3x-3. Устраните уравнение, в котором результат равняется 0.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-3\right)}}{2\times 2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замените в формуле корней квадратного уравнения a на 2, b на 3 и c на -3.
x=\frac{-3±\sqrt{33}}{4}
Выполните арифметические операции.
x=\frac{-\sqrt{33}-3}{4} x=\frac{\sqrt{33}-3}{4}
Решение 2x^{2}+3x-3=0 уравнений, когда ±-плюс и когда ± — минус.
x=3 x=\frac{-\sqrt{33}-3}{4} x=\frac{\sqrt{33}-3}{4}
Перечислите все найденные решения.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}