Решение для x
x\leq 2
График
Поделиться
Скопировано в буфер обмена
-24+6x\leq -4\left(x+1\right)
Чтобы умножить -6 на 4-x, используйте свойство дистрибутивности.
-24+6x\leq -4x-4
Чтобы умножить -4 на x+1, используйте свойство дистрибутивности.
-24+6x+4x\leq -4
Прибавьте 4x к обеим частям.
-24+10x\leq -4
Объедините 6x и 4x, чтобы получить 10x.
10x\leq -4+24
Прибавьте 24 к обеим частям.
10x\leq 20
Чтобы вычислить 20, сложите -4 и 24.
x\leq \frac{20}{10}
Разделите обе части на 10. Так как 10 является положительным, неравенство будет совпадать.
x\leq 2
Разделите 20 на 10, чтобы получить 2.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}