Разложить на множители
\left(x-6\right)\left(x+5\right)
Вычислить
\left(x-6\right)\left(x+5\right)
График
Поделиться
Скопировано в буфер обмена
x^{2}-x-30
Приведите многочлен к стандартному виду. Разместите члены, начиная с члена с наибольшей степенью и заканчивая членом с наименьшей степенью.
a+b=-1 ab=1\left(-30\right)=-30
Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: x^{2}+ax+bx-30. Чтобы найти a и b, настройте систему на ее устранение.
1,-30 2,-15 3,-10 5,-6
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары целых -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Вычислите сумму для каждой пары.
a=-6 b=5
Решение — это пара значений, сумма которых равна -1.
\left(x^{2}-6x\right)+\left(5x-30\right)
Перепишите x^{2}-x-30 как \left(x^{2}-6x\right)+\left(5x-30\right).
x\left(x-6\right)+5\left(x-6\right)
Разложите x в первом и 5 в второй группе.
\left(x-6\right)\left(x+5\right)
Вынесите за скобки общий член x-6, используя свойство дистрибутивности.
x^{2}-x-30=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-30\right)}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2}
Умножьте -4 на -30.
x=\frac{-\left(-1\right)±\sqrt{121}}{2}
Прибавьте 1 к 120.
x=\frac{-\left(-1\right)±11}{2}
Извлеките квадратный корень из 121.
x=\frac{1±11}{2}
Число, противоположное -1, равно 1.
x=\frac{12}{2}
Решите уравнение x=\frac{1±11}{2} при условии, что ± — плюс. Прибавьте 1 к 11.
x=6
Разделите 12 на 2.
x=-\frac{10}{2}
Решите уравнение x=\frac{1±11}{2} при условии, что ± — минус. Вычтите 11 из 1.
x=-5
Разделите -10 на 2.
x^{2}-x-30=\left(x-6\right)\left(x-\left(-5\right)\right)
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте 6 вместо x_{1} и -5 вместо x_{2}.
x^{2}-x-30=\left(x-6\right)\left(x+5\right)
Упростите все выражения типа p-\left(-q\right) до выражений типа p+q.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}