Решение для x
x\geq \frac{8}{5}
График
Поделиться
Скопировано в буфер обмена
-12x+18\leq -3\left(2-x\right)
Чтобы умножить -6 на 2x-3, используйте свойство дистрибутивности.
-12x+18\leq -6+3x
Чтобы умножить -3 на 2-x, используйте свойство дистрибутивности.
-12x+18-3x\leq -6
Вычтите 3x из обеих частей уравнения.
-15x+18\leq -6
Объедините -12x и -3x, чтобы получить -15x.
-15x\leq -6-18
Вычтите 18 из обеих частей уравнения.
-15x\leq -24
Вычтите 18 из -6, чтобы получить -24.
x\geq \frac{-24}{-15}
Разделите обе части на -15. Так как -15 является отрицательным, направление неравенства изменяется.
x\geq \frac{8}{5}
Привести дробь \frac{-24}{-15} к несократимому виду, разделив числитель и знаменатель на -3.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}