- \frac { k } { x ^ { 2 } } d x = m v d v
Найдите d (комплексное решение)
\left\{\begin{matrix}d=0\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&k=-mxv^{2}\text{ and }x\neq 0\end{matrix}\right,
Найдите k (комплексное решение)
\left\{\begin{matrix}k=-mxv^{2}\text{, }&x\neq 0\\k\in \mathrm{C}\text{, }&d=0\text{ and }x\neq 0\end{matrix}\right,
Найдите d
\left\{\begin{matrix}d=0\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&k=-mxv^{2}\text{ and }x\neq 0\end{matrix}\right,
Найдите k
\left\{\begin{matrix}k=-mxv^{2}\text{, }&x\neq 0\\k\in \mathrm{R}\text{, }&d=0\text{ and }x\neq 0\end{matrix}\right,
График
Поделиться
Скопировано в буфер обмена
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Умножьте обе части уравнения на x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Чтобы перемножить степени с одинаковым основанием, сложите их показатели. Сложите 1 и 2, чтобы получить 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Перемножьте v и v, чтобы получить v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Отобразить \left(-\frac{k}{x^{2}}\right)d как одну дробь.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Отобразить \frac{-kd}{x^{2}}x^{3} как одну дробь.
-dkx=mv^{2}dx^{2}
Сократите x^{2} в числителе и знаменателе.
-dkx-mv^{2}dx^{2}=0
Вычтите mv^{2}dx^{2} из обеих частей уравнения.
-dmv^{2}x^{2}-dkx=0
Упорядочите члены.
\left(-mv^{2}x^{2}-kx\right)d=0
Объедините все члены, содержащие d.
d=0
Разделите 0 на -mv^{2}x^{2}-kx.
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Умножьте обе части уравнения на x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Чтобы перемножить степени с одинаковым основанием, сложите их показатели. Сложите 1 и 2, чтобы получить 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Перемножьте v и v, чтобы получить v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Отобразить \left(-\frac{k}{x^{2}}\right)d как одну дробь.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Отобразить \frac{-kd}{x^{2}}x^{3} как одну дробь.
-dkx=mv^{2}dx^{2}
Сократите x^{2} в числителе и знаменателе.
\left(-dx\right)k=dmv^{2}x^{2}
Уравнение имеет стандартный вид.
\frac{\left(-dx\right)k}{-dx}=\frac{dmv^{2}x^{2}}{-dx}
Разделите обе части на -dx.
k=\frac{dmv^{2}x^{2}}{-dx}
Деление на -dx аннулирует операцию умножения на -dx.
k=-mxv^{2}
Разделите mv^{2}dx^{2} на -dx.
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Умножьте обе части уравнения на x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Чтобы перемножить степени с одинаковым основанием, сложите их показатели. Сложите 1 и 2, чтобы получить 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Перемножьте v и v, чтобы получить v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Отобразить \left(-\frac{k}{x^{2}}\right)d как одну дробь.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Отобразить \frac{-kd}{x^{2}}x^{3} как одну дробь.
-dkx=mv^{2}dx^{2}
Сократите x^{2} в числителе и знаменателе.
-dkx-mv^{2}dx^{2}=0
Вычтите mv^{2}dx^{2} из обеих частей уравнения.
-dmv^{2}x^{2}-dkx=0
Упорядочите члены.
\left(-mv^{2}x^{2}-kx\right)d=0
Объедините все члены, содержащие d.
d=0
Разделите 0 на -mv^{2}x^{2}-kx.
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Умножьте обе части уравнения на x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Чтобы перемножить степени с одинаковым основанием, сложите их показатели. Сложите 1 и 2, чтобы получить 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Перемножьте v и v, чтобы получить v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Отобразить \left(-\frac{k}{x^{2}}\right)d как одну дробь.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Отобразить \frac{-kd}{x^{2}}x^{3} как одну дробь.
-dkx=mv^{2}dx^{2}
Сократите x^{2} в числителе и знаменателе.
\left(-dx\right)k=dmv^{2}x^{2}
Уравнение имеет стандартный вид.
\frac{\left(-dx\right)k}{-dx}=\frac{dmv^{2}x^{2}}{-dx}
Разделите обе части на -dx.
k=\frac{dmv^{2}x^{2}}{-dx}
Деление на -dx аннулирует операцию умножения на -dx.
k=-mxv^{2}
Разделите mv^{2}dx^{2} на -dx.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}