Найдите x
x=900
x=1200
График
Викторина
Quadratic Equation
(100- \frac{ x }{ 50 } )((3000+x)-150)- \frac{ x }{ 50 } \times 50=306600
Поделиться
Скопировано в буфер обмена
50\left(100-\frac{x}{50}\right)\left(3000+x-150\right)-x\times 50=15330000
Умножьте обе части уравнения на 50.
50\left(100-\frac{x}{50}\right)\left(2850+x\right)-x\times 50=15330000
Вычтите 150 из 3000, чтобы получить 2850.
\left(5000+50\left(-\frac{x}{50}\right)\right)\left(2850+x\right)-x\times 50=15330000
Чтобы умножить 50 на 100-\frac{x}{50}, используйте свойство дистрибутивности.
\left(5000+\frac{-50x}{50}\right)\left(2850+x\right)-x\times 50=15330000
Отобразить 50\left(-\frac{x}{50}\right) как одну дробь.
\left(5000-x\right)\left(2850+x\right)-x\times 50=15330000
Сократите 50 и 50.
14250000+5000x-2850x-x^{2}-x\times 50=15330000
Используйте свойство дистрибутивности, умножив каждый член 5000-x на каждый член 2850+x.
14250000+2150x-x^{2}-x\times 50=15330000
Объедините 5000x и -2850x, чтобы получить 2150x.
14250000+2100x-x^{2}=15330000
Объедините 2150x и -x\times 50, чтобы получить 2100x.
14250000+2100x-x^{2}-15330000=0
Вычтите 15330000 из обеих частей уравнения.
-1080000+2100x-x^{2}=0
Вычтите 15330000 из 14250000, чтобы получить -1080000.
-x^{2}+2100x-1080000=0
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-2100±\sqrt{2100^{2}-4\left(-1\right)\left(-1080000\right)}}{2\left(-1\right)}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте -1 вместо a, 2100 вместо b и -1080000 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2100±\sqrt{4410000-4\left(-1\right)\left(-1080000\right)}}{2\left(-1\right)}
Возведите 2100 в квадрат.
x=\frac{-2100±\sqrt{4410000+4\left(-1080000\right)}}{2\left(-1\right)}
Умножьте -4 на -1.
x=\frac{-2100±\sqrt{4410000-4320000}}{2\left(-1\right)}
Умножьте 4 на -1080000.
x=\frac{-2100±\sqrt{90000}}{2\left(-1\right)}
Прибавьте 4410000 к -4320000.
x=\frac{-2100±300}{2\left(-1\right)}
Извлеките квадратный корень из 90000.
x=\frac{-2100±300}{-2}
Умножьте 2 на -1.
x=-\frac{1800}{-2}
Решите уравнение x=\frac{-2100±300}{-2} при условии, что ± — плюс. Прибавьте -2100 к 300.
x=900
Разделите -1800 на -2.
x=-\frac{2400}{-2}
Решите уравнение x=\frac{-2100±300}{-2} при условии, что ± — минус. Вычтите 300 из -2100.
x=1200
Разделите -2400 на -2.
x=900 x=1200
Уравнение решено.
50\left(100-\frac{x}{50}\right)\left(3000+x-150\right)-x\times 50=15330000
Умножьте обе части уравнения на 50.
50\left(100-\frac{x}{50}\right)\left(2850+x\right)-x\times 50=15330000
Вычтите 150 из 3000, чтобы получить 2850.
\left(5000+50\left(-\frac{x}{50}\right)\right)\left(2850+x\right)-x\times 50=15330000
Чтобы умножить 50 на 100-\frac{x}{50}, используйте свойство дистрибутивности.
\left(5000+\frac{-50x}{50}\right)\left(2850+x\right)-x\times 50=15330000
Отобразить 50\left(-\frac{x}{50}\right) как одну дробь.
\left(5000-x\right)\left(2850+x\right)-x\times 50=15330000
Сократите 50 и 50.
14250000+5000x-2850x-x^{2}-x\times 50=15330000
Используйте свойство дистрибутивности, умножив каждый член 5000-x на каждый член 2850+x.
14250000+2150x-x^{2}-x\times 50=15330000
Объедините 5000x и -2850x, чтобы получить 2150x.
14250000+2100x-x^{2}=15330000
Объедините 2150x и -x\times 50, чтобы получить 2100x.
2100x-x^{2}=15330000-14250000
Вычтите 14250000 из обеих частей уравнения.
2100x-x^{2}=1080000
Вычтите 14250000 из 15330000, чтобы получить 1080000.
-x^{2}+2100x=1080000
Такие квадратные уравнения, как это, можно решить, дополнив их до полного квадрата. Чтобы можно было дополнить уравнение до полного квадрата, оно должно иметь вид x^{2}+bx=c.
\frac{-x^{2}+2100x}{-1}=\frac{1080000}{-1}
Разделите обе части на -1.
x^{2}+\frac{2100}{-1}x=\frac{1080000}{-1}
Деление на -1 аннулирует операцию умножения на -1.
x^{2}-2100x=\frac{1080000}{-1}
Разделите 2100 на -1.
x^{2}-2100x=-1080000
Разделите 1080000 на -1.
x^{2}-2100x+\left(-1050\right)^{2}=-1080000+\left(-1050\right)^{2}
Деление -2100, коэффициент x термина, 2 для получения -1050. Затем добавьте квадрат -1050 к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
x^{2}-2100x+1102500=-1080000+1102500
Возведите -1050 в квадрат.
x^{2}-2100x+1102500=22500
Прибавьте -1080000 к 1102500.
\left(x-1050\right)^{2}=22500
Коэффициент x^{2}-2100x+1102500. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1050\right)^{2}}=\sqrt{22500}
Извлеките квадратный корень из обеих частей уравнения.
x-1050=150 x-1050=-150
Упростите.
x=1200 x=900
Прибавьте 1050 к обеим частям уравнения.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}