Перейти к основному содержанию
Найдите x
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

x^{2}-8x+16-9=0
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(x-4\right)^{2}.
x^{2}-8x+7=0
Вычтите 9 из 16, чтобы получить 7.
a+b=-8 ab=7
Чтобы решить уравнение, фактор x^{2}-8x+7 с помощью формулы x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Чтобы найти a и b, настройте систему на ее устранение.
a=-7 b=-1
Так как ab является положительным, a и b имеют один и тот же знак. Так как a+b является отрицательным, a и b являются отрицательными. Единственная такая пара является решением системы.
\left(x-7\right)\left(x-1\right)
Перезапишите разложенное на множители выражение \left(x+a\right)\left(x+b\right) с использованием полученных значений.
x=7 x=1
Чтобы найти решения для уравнений, решите x-7=0 и x-1=0у.
x^{2}-8x+16-9=0
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(x-4\right)^{2}.
x^{2}-8x+7=0
Вычтите 9 из 16, чтобы получить 7.
a+b=-8 ab=1\times 7=7
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: x^{2}+ax+bx+7. Чтобы найти a и b, настройте систему на ее устранение.
a=-7 b=-1
Так как ab является положительным, a и b имеют один и тот же знак. Так как a+b является отрицательным, a и b являются отрицательными. Единственная такая пара является решением системы.
\left(x^{2}-7x\right)+\left(-x+7\right)
Перепишите x^{2}-8x+7 как \left(x^{2}-7x\right)+\left(-x+7\right).
x\left(x-7\right)-\left(x-7\right)
Разложите x в первом и -1 в второй группе.
\left(x-7\right)\left(x-1\right)
Вынесите за скобки общий член x-7, используя свойство дистрибутивности.
x=7 x=1
Чтобы найти решения для уравнений, решите x-7=0 и x-1=0у.
x^{2}-8x+16-9=0
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(x-4\right)^{2}.
x^{2}-8x+7=0
Вычтите 9 из 16, чтобы получить 7.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, -8 вместо b и 7 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
Возведите -8 в квадрат.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Умножьте -4 на 7.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
Прибавьте 64 к -28.
x=\frac{-\left(-8\right)±6}{2}
Извлеките квадратный корень из 36.
x=\frac{8±6}{2}
Число, противоположное -8, равно 8.
x=\frac{14}{2}
Решите уравнение x=\frac{8±6}{2} при условии, что ± — плюс. Прибавьте 8 к 6.
x=7
Разделите 14 на 2.
x=\frac{2}{2}
Решите уравнение x=\frac{8±6}{2} при условии, что ± — минус. Вычтите 6 из 8.
x=1
Разделите 2 на 2.
x=7 x=1
Уравнение решено.
x^{2}-8x+16-9=0
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(x-4\right)^{2}.
x^{2}-8x+7=0
Вычтите 9 из 16, чтобы получить 7.
x^{2}-8x=-7
Вычтите 7 из обеих частей уравнения. Если вычесть любое число из нуля, то получится его отрицательный эквивалент.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Деление -8, коэффициент x термина, 2 для получения -4. Затем добавьте квадрат -4 к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
x^{2}-8x+16=-7+16
Возведите -4 в квадрат.
x^{2}-8x+16=9
Прибавьте -7 к 16.
\left(x-4\right)^{2}=9
Коэффициент x^{2}-8x+16. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Извлеките квадратный корень из обеих частей уравнения.
x-4=3 x-4=-3
Упростите.
x=7 x=1
Прибавьте 4 к обеим частям уравнения.