Перейти к основному содержанию
Найдите x
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

x^{2}-8x+16=0
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(x-4\right)^{2}.
a+b=-8 ab=16
Чтобы решить уравнение, фактор x^{2}-8x+16 с помощью формулы x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Чтобы найти a и b, настройте систему на ее устранение.
-1,-16 -2,-8 -4,-4
Так как ab является положительным, a и b имеют один и тот же знак. Так как a+b является отрицательным, a и b являются отрицательными. Перечислите все такие пары целых 16.
-1-16=-17 -2-8=-10 -4-4=-8
Вычислите сумму для каждой пары.
a=-4 b=-4
Решение — это пара значений, сумма которых равна -8.
\left(x-4\right)\left(x-4\right)
Перезапишите разложенное на множители выражение \left(x+a\right)\left(x+b\right) с использованием полученных значений.
\left(x-4\right)^{2}
Перепишите в виде квадрата двучлена.
x=4
Чтобы найти решение уравнения, решите следующее: x-4=0.
x^{2}-8x+16=0
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(x-4\right)^{2}.
a+b=-8 ab=1\times 16=16
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: x^{2}+ax+bx+16. Чтобы найти a и b, настройте систему на ее устранение.
-1,-16 -2,-8 -4,-4
Так как ab является положительным, a и b имеют один и тот же знак. Так как a+b является отрицательным, a и b являются отрицательными. Перечислите все такие пары целых 16.
-1-16=-17 -2-8=-10 -4-4=-8
Вычислите сумму для каждой пары.
a=-4 b=-4
Решение — это пара значений, сумма которых равна -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Перепишите x^{2}-8x+16 как \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Разложите x в первом и -4 в второй группе.
\left(x-4\right)\left(x-4\right)
Вынесите за скобки общий член x-4, используя свойство дистрибутивности.
\left(x-4\right)^{2}
Перепишите в виде квадрата двучлена.
x=4
Чтобы найти решение уравнения, решите следующее: x-4=0.
x^{2}-8x+16=0
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(x-4\right)^{2}.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, -8 вместо b и 16 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Возведите -8 в квадрат.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Умножьте -4 на 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Прибавьте 64 к -64.
x=-\frac{-8}{2}
Извлеките квадратный корень из 0.
x=\frac{8}{2}
Число, противоположное -8, равно 8.
x=4
Разделите 8 на 2.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Извлеките квадратный корень из обеих частей уравнения.
x-4=0 x-4=0
Упростите.
x=4 x=4
Прибавьте 4 к обеим частям уравнения.
x=4
Уравнение решено. Решения совпадают.