Перейти к основному содержанию
Найдите x
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

x^{2}-5x+6=2
Чтобы умножить x-3 на x-2, используйте свойство дистрибутивности и приведение подобных.
x^{2}-5x+6-2=0
Вычтите 2 из обеих частей уравнения.
x^{2}-5x+4=0
Вычтите 2 из 6, чтобы получить 4.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, -5 вместо b и 4 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Возведите -5 в квадрат.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Умножьте -4 на 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Прибавьте 25 к -16.
x=\frac{-\left(-5\right)±3}{2}
Извлеките квадратный корень из 9.
x=\frac{5±3}{2}
Число, противоположное -5, равно 5.
x=\frac{8}{2}
Решите уравнение x=\frac{5±3}{2} при условии, что ± — плюс. Прибавьте 5 к 3.
x=4
Разделите 8 на 2.
x=\frac{2}{2}
Решите уравнение x=\frac{5±3}{2} при условии, что ± — минус. Вычтите 3 из 5.
x=1
Разделите 2 на 2.
x=4 x=1
Уравнение решено.
x^{2}-5x+6=2
Чтобы умножить x-3 на x-2, используйте свойство дистрибутивности и приведение подобных.
x^{2}-5x=2-6
Вычтите 6 из обеих частей уравнения.
x^{2}-5x=-4
Вычтите 6 из 2, чтобы получить -4.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Деление -5, коэффициент x термина, 2 для получения -\frac{5}{2}. Затем добавьте квадрат -\frac{5}{2} к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
Возведите -\frac{5}{2} в квадрат путем возведения числителя и знаменателя дроби в квадрат.
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
Прибавьте -4 к \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
Коэффициент x^{2}-5x+\frac{25}{4}. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Извлеките квадратный корень из обеих частей уравнения.
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
Упростите.
x=4 x=1
Прибавьте \frac{5}{2} к обеим частям уравнения.