Найдите x (комплексное решение)
x=6
x=2\sqrt{3}i\approx 3,464101615i
x=-2\sqrt{3}i\approx -0-3,464101615i
Найдите x
x=6
График
Поделиться
Скопировано в буфер обмена
x^{3}-6x^{2}+12x-8=64
Использование бинома Ньютона \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} для разложения \left(x-2\right)^{3}.
x^{3}-6x^{2}+12x-8-64=0
Вычтите 64 из обеих частей уравнения.
x^{3}-6x^{2}+12x-72=0
Вычтите 64 из -8, чтобы получить -72.
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член -72, а q делит старший коэффициент 1. Перечислите всех кандидатов \frac{p}{q}.
x=6
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
x^{2}+12=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите x^{3}-6x^{2}+12x-72 на x-6, чтобы получить x^{2}+12. Устраните уравнение, в котором результат равняется 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 12}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замените в формуле корней квадратного уравнения a на 1, b на 0 и c на 12.
x=\frac{0±\sqrt{-48}}{2}
Выполните арифметические операции.
x=-2i\sqrt{3} x=2i\sqrt{3}
Решение x^{2}+12=0 уравнений, когда ±-плюс и когда ± — минус.
x=6 x=-2i\sqrt{3} x=2i\sqrt{3}
Перечислите все найденные решения.
x^{3}-6x^{2}+12x-8=64
Использование бинома Ньютона \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} для разложения \left(x-2\right)^{3}.
x^{3}-6x^{2}+12x-8-64=0
Вычтите 64 из обеих частей уравнения.
x^{3}-6x^{2}+12x-72=0
Вычтите 64 из -8, чтобы получить -72.
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член -72, а q делит старший коэффициент 1. Перечислите всех кандидатов \frac{p}{q}.
x=6
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
x^{2}+12=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите x^{3}-6x^{2}+12x-72 на x-6, чтобы получить x^{2}+12. Устраните уравнение, в котором результат равняется 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 12}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замените в формуле корней квадратного уравнения a на 1, b на 0 и c на 12.
x=\frac{0±\sqrt{-48}}{2}
Выполните арифметические операции.
x\in \emptyset
Решения нет, так как квадратный корень из отрицательного числа не существует в области вещественных чисел.
x=6
Перечислите все найденные решения.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}