Вычислить
28-2\sqrt{6}\approx 23,101020514
Разложить на множители
2 {(14 - \sqrt{6})} = 23,101020514
Поделиться
Скопировано в буфер обмена
8\sqrt{3}\sqrt{2}+20\left(\sqrt{2}\right)^{2}-4\left(\sqrt{3}\right)^{2}-10\sqrt{3}\sqrt{2}
Используйте свойство дистрибутивности, умножив каждый член 4\sqrt{2}-2\sqrt{3} на каждый член 2\sqrt{3}+5\sqrt{2}.
8\sqrt{6}+20\left(\sqrt{2}\right)^{2}-4\left(\sqrt{3}\right)^{2}-10\sqrt{3}\sqrt{2}
Чтобы перемножить \sqrt{3} и \sqrt{2}, перемножьте номера в квадратном корне.
8\sqrt{6}+20\times 2-4\left(\sqrt{3}\right)^{2}-10\sqrt{3}\sqrt{2}
Квадрат выражения \sqrt{2} равен 2.
8\sqrt{6}+40-4\left(\sqrt{3}\right)^{2}-10\sqrt{3}\sqrt{2}
Перемножьте 20 и 2, чтобы получить 40.
8\sqrt{6}+40-4\times 3-10\sqrt{3}\sqrt{2}
Квадрат выражения \sqrt{3} равен 3.
8\sqrt{6}+40-12-10\sqrt{3}\sqrt{2}
Перемножьте -4 и 3, чтобы получить -12.
8\sqrt{6}+28-10\sqrt{3}\sqrt{2}
Вычтите 12 из 40, чтобы получить 28.
8\sqrt{6}+28-10\sqrt{6}
Чтобы перемножить \sqrt{3} и \sqrt{2}, перемножьте номера в квадратном корне.
-2\sqrt{6}+28
Объедините 8\sqrt{6} и -10\sqrt{6}, чтобы получить -2\sqrt{6}.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}