Вычислить
\frac{9x\left(x+1\right)}{8}
Разложите
\frac{9x^{2}+9x}{8}
График
Поделиться
Скопировано в буфер обмена
\frac{\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Наименьшее общее кратное чисел x+1 и x-2 равно \left(x-2\right)\left(x+1\right). Умножьте \frac{x-2}{x+1} на \frac{x-2}{x-2}. Умножьте \frac{5-x}{x-2} на \frac{x+1}{x+1}.
\frac{\frac{\left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Поскольку числа \frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} и \frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} имеют одинаковый знаменатель, выполните операцию сложения с помощью числителей.
\frac{\frac{x^{2}-2x-2x+4+5x+5-x^{2}-x}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Выполните умножение в \left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right).
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Приведите подобные члены в x^{2}-2x-2x+4+5x+5-x^{2}-x.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Разложите на множители выражение x^{2}-x-2. Разложите на множители выражение x^{2}+3x+2.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Наименьшее общее кратное чисел \left(x-2\right)\left(x+1\right) и \left(x+1\right)\left(x+2\right) равно \left(x-2\right)\left(x+1\right)\left(x+2\right). Умножьте \frac{1}{\left(x-2\right)\left(x+1\right)} на \frac{x+2}{x+2}. Умножьте \frac{1}{\left(x+1\right)\left(x+2\right)} на \frac{x-2}{x-2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Поскольку числа \frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} и \frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} имеют одинаковый знаменатель, выполните операцию вычитания с помощью числителей.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Выполните умножение в x+2-\left(x-2\right).
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Приведите подобные члены в x+2-x+2.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Разложите на множители выражение x^{2}+x.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Наименьшее общее кратное чисел x и x\left(x+1\right) равно x\left(x+1\right). Умножьте \frac{x+1}{x} на \frac{x+1}{x+1}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{\left(x+1\right)\left(x+1\right)+3-x^{2}}{x\left(x+1\right)}}
Поскольку числа \frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)} и \frac{3-x^{2}}{x\left(x+1\right)} имеют одинаковый знаменатель, выполните операцию сложения с помощью числителей.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{x^{2}+x+1+x+3-x^{2}}{x\left(x+1\right)}}
Выполните умножение в \left(x+1\right)\left(x+1\right)+3-x^{2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{2x+4}{x\left(x+1\right)}}
Приведите подобные члены в x^{2}+x+1+x+3-x^{2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}}
Умножить \frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} на \frac{2x+4}{x\left(x+1\right)}, перемножив числители и знаменатели.
\frac{9\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\times 4\left(2x+4\right)}
Разделите \frac{9}{\left(x-2\right)\left(x+1\right)} на \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}, умножив \frac{9}{\left(x-2\right)\left(x+1\right)} на величину, обратную \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}.
\frac{9x\left(x+1\right)\left(x+2\right)}{4\left(2x+4\right)}
Сократите \left(x-2\right)\left(x+1\right) в числителе и знаменателе.
\frac{9x\left(x+1\right)\left(x+2\right)}{2\times 4\left(x+2\right)}
Разложите на множители еще не разложенные выражения.
\frac{9x\left(x+1\right)}{2\times 4}
Сократите x+2 в числителе и знаменателе.
\frac{9x^{2}+9x}{8}
Раскройте скобки в выражении.
\frac{\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Наименьшее общее кратное чисел x+1 и x-2 равно \left(x-2\right)\left(x+1\right). Умножьте \frac{x-2}{x+1} на \frac{x-2}{x-2}. Умножьте \frac{5-x}{x-2} на \frac{x+1}{x+1}.
\frac{\frac{\left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Поскольку числа \frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} и \frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} имеют одинаковый знаменатель, выполните операцию сложения с помощью числителей.
\frac{\frac{x^{2}-2x-2x+4+5x+5-x^{2}-x}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Выполните умножение в \left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right).
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Приведите подобные члены в x^{2}-2x-2x+4+5x+5-x^{2}-x.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Разложите на множители выражение x^{2}-x-2. Разложите на множители выражение x^{2}+3x+2.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Наименьшее общее кратное чисел \left(x-2\right)\left(x+1\right) и \left(x+1\right)\left(x+2\right) равно \left(x-2\right)\left(x+1\right)\left(x+2\right). Умножьте \frac{1}{\left(x-2\right)\left(x+1\right)} на \frac{x+2}{x+2}. Умножьте \frac{1}{\left(x+1\right)\left(x+2\right)} на \frac{x-2}{x-2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Поскольку числа \frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} и \frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} имеют одинаковый знаменатель, выполните операцию вычитания с помощью числителей.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Выполните умножение в x+2-\left(x-2\right).
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Приведите подобные члены в x+2-x+2.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Разложите на множители выражение x^{2}+x.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Наименьшее общее кратное чисел x и x\left(x+1\right) равно x\left(x+1\right). Умножьте \frac{x+1}{x} на \frac{x+1}{x+1}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{\left(x+1\right)\left(x+1\right)+3-x^{2}}{x\left(x+1\right)}}
Поскольку числа \frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)} и \frac{3-x^{2}}{x\left(x+1\right)} имеют одинаковый знаменатель, выполните операцию сложения с помощью числителей.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{x^{2}+x+1+x+3-x^{2}}{x\left(x+1\right)}}
Выполните умножение в \left(x+1\right)\left(x+1\right)+3-x^{2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{2x+4}{x\left(x+1\right)}}
Приведите подобные члены в x^{2}+x+1+x+3-x^{2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}}
Умножить \frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} на \frac{2x+4}{x\left(x+1\right)}, перемножив числители и знаменатели.
\frac{9\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\times 4\left(2x+4\right)}
Разделите \frac{9}{\left(x-2\right)\left(x+1\right)} на \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}, умножив \frac{9}{\left(x-2\right)\left(x+1\right)} на величину, обратную \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}.
\frac{9x\left(x+1\right)\left(x+2\right)}{4\left(2x+4\right)}
Сократите \left(x-2\right)\left(x+1\right) в числителе и знаменателе.
\frac{9x\left(x+1\right)\left(x+2\right)}{2\times 4\left(x+2\right)}
Разложите на множители еще не разложенные выражения.
\frac{9x\left(x+1\right)}{2\times 4}
Сократите x+2 в числителе и знаменателе.
\frac{9x^{2}+9x}{8}
Раскройте скобки в выражении.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}