Перейти к основному содержанию
Вычислить
Tick mark Image
Разложите
Tick mark Image

Подобные задачи из результатов поиска в Интернете

Поделиться

\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r+\frac{1}{4}s\right)^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Возведите \frac{1}{4}r-s+\frac{2}{3}t в квадрат.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}\right)-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Использование бинома Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2} для разложения \left(r+\frac{1}{4}s\right)^{2}.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-r^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Чтобы найти противоположное значение выражения r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}, необходимо найти противоположное значение для каждого члена.
-\frac{15}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините \frac{1}{16}r^{2} и -r^{2}, чтобы получить -\frac{15}{16}r^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините -\frac{1}{2}rs и -\frac{1}{2}rs, чтобы получить -rs.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините s^{2} и -\frac{1}{16}s^{2}, чтобы получить \frac{15}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}\right)+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(s-\frac{2}{3}t\right)^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-s^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Чтобы найти противоположное значение выражения s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}, необходимо найти противоположное значение для каждого члена.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините \frac{15}{16}s^{2} и -s^{2}, чтобы получить -\frac{1}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{4}{9}t^{2}-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините -\frac{4}{3}st и \frac{4}{3}st, чтобы получить 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините \frac{4}{9}t^{2} и -\frac{4}{9}t^{2}, чтобы получить 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\left(\frac{1}{16}r+\frac{1}{16}s\right)\left(15r+s\right)
Чтобы умножить \frac{1}{16} на r+s, используйте свойство дистрибутивности.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{15}{16}r^{2}+rs+\frac{1}{16}s^{2}
Чтобы умножить \frac{1}{16}r+\frac{1}{16}s на 15r+s, используйте свойство дистрибутивности и приведение подобных.
-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+rs+\frac{1}{16}s^{2}
Объедините -\frac{15}{16}r^{2} и \frac{15}{16}r^{2}, чтобы получить 0.
\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}s^{2}
Объедините -rs и rs, чтобы получить 0.
\frac{1}{3}rt
Объедините -\frac{1}{16}s^{2} и \frac{1}{16}s^{2}, чтобы получить 0.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r+\frac{1}{4}s\right)^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Возведите \frac{1}{4}r-s+\frac{2}{3}t в квадрат.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}\right)-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Использование бинома Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2} для разложения \left(r+\frac{1}{4}s\right)^{2}.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-r^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Чтобы найти противоположное значение выражения r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}, необходимо найти противоположное значение для каждого члена.
-\frac{15}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините \frac{1}{16}r^{2} и -r^{2}, чтобы получить -\frac{15}{16}r^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините -\frac{1}{2}rs и -\frac{1}{2}rs, чтобы получить -rs.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините s^{2} и -\frac{1}{16}s^{2}, чтобы получить \frac{15}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}\right)+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(s-\frac{2}{3}t\right)^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-s^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Чтобы найти противоположное значение выражения s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}, необходимо найти противоположное значение для каждого члена.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините \frac{15}{16}s^{2} и -s^{2}, чтобы получить -\frac{1}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{4}{9}t^{2}-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините -\frac{4}{3}st и \frac{4}{3}st, чтобы получить 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Объедините \frac{4}{9}t^{2} и -\frac{4}{9}t^{2}, чтобы получить 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\left(\frac{1}{16}r+\frac{1}{16}s\right)\left(15r+s\right)
Чтобы умножить \frac{1}{16} на r+s, используйте свойство дистрибутивности.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{15}{16}r^{2}+rs+\frac{1}{16}s^{2}
Чтобы умножить \frac{1}{16}r+\frac{1}{16}s на 15r+s, используйте свойство дистрибутивности и приведение подобных.
-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+rs+\frac{1}{16}s^{2}
Объедините -\frac{15}{16}r^{2} и \frac{15}{16}r^{2}, чтобы получить 0.
\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}s^{2}
Объедините -rs и rs, чтобы получить 0.
\frac{1}{3}rt
Объедините -\frac{1}{16}s^{2} и \frac{1}{16}s^{2}, чтобы получить 0.