Перейти к основному содержанию
Вычислить
Tick mark Image
Разложите
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Учтите \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Умножение можно преобразовать в разность квадратов с помощью следующего правила: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Возведите 1 в квадрат.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Разложите \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Вычислите \frac{1}{2} в степени 2 и получите \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Объедините \frac{1}{4}x^{2} и \frac{1}{4}x^{2}, чтобы получить \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Вычтите 1 из 1, чтобы получить 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Учтите \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Умножение можно преобразовать в разность квадратов с помощью следующего правила: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Возведите 1 в квадрат.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Разложите \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Вычислите -\frac{1}{2} в степени 2 и получите \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Объедините \frac{1}{2}x^{2} и \frac{1}{4}x^{2}, чтобы получить \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Использование бинома Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2} для разложения \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Объедините \frac{3}{4}x^{2} и \frac{1}{4}x^{2}, чтобы получить x^{2}.
x^{2}+1-1
Объедините -x и x, чтобы получить 0.
x^{2}
Вычтите 1 из 1, чтобы получить 0.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Учтите \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Умножение можно преобразовать в разность квадратов с помощью следующего правила: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Возведите 1 в квадрат.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Разложите \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Вычислите \frac{1}{2} в степени 2 и получите \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Объедините \frac{1}{4}x^{2} и \frac{1}{4}x^{2}, чтобы получить \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Вычтите 1 из 1, чтобы получить 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Учтите \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Умножение можно преобразовать в разность квадратов с помощью следующего правила: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Возведите 1 в квадрат.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Разложите \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Вычислите -\frac{1}{2} в степени 2 и получите \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Объедините \frac{1}{2}x^{2} и \frac{1}{4}x^{2}, чтобы получить \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Использование бинома Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2} для разложения \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Объедините \frac{3}{4}x^{2} и \frac{1}{4}x^{2}, чтобы получить x^{2}.
x^{2}+1-1
Объедините -x и x, чтобы получить 0.
x^{2}
Вычтите 1 из 1, чтобы получить 0.