Найдите x (комплексное решение)
x\in \sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}},\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}},\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
График
Поделиться
Скопировано в буфер обмена
x^{6}=6x^{3}-125
Вычислите 5 в степени 3 и получите 125.
x^{6}-6x^{3}=-125
Вычтите 6x^{3} из обеих частей уравнения.
x^{6}-6x^{3}+125=0
Прибавьте 125 к обеим частям.
t^{2}-6t+125=0
Замените t на x^{3}.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 125}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замените в формуле корней квадратного уравнения a на 1, b на -6 и c на 125.
t=\frac{6±\sqrt{-464}}{2}
Выполните арифметические операции.
t=3+2\sqrt{29}i t=-2\sqrt{29}i+3
Решение t=\frac{6±\sqrt{-464}}{2} уравнений, когда ±-плюс и когда ± — минус.
x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
Так как x=t^{3}, получены решения для каждого t.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}