Перейти к основному содержанию
Найдите x
Tick mark Image
Найдите x (комплексное решение)
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

x^{6}+1-x^{4}=x^{2}
Вычтите x^{4} из обеих частей уравнения.
x^{6}+1-x^{4}-x^{2}=0
Вычтите x^{2} из обеих частей уравнения.
x^{6}-x^{4}-x^{2}+1=0
Упорядочите уравнение и приведите его к стандартному виду. Разместите члены, начиная с члена с наибольшей степенью, и заканчивая членом с наименьшей степенью.
±1
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член 1, а q делит старший коэффициент 1. Перечислите всех кандидатов \frac{p}{q}.
x=1
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
x^{5}+x^{4}-x-1=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите x^{6}-x^{4}-x^{2}+1 на x-1, чтобы получить x^{5}+x^{4}-x-1. Устраните уравнение, в котором результат равняется 0.
±1
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член -1, а q делит старший коэффициент 1. Перечислите всех кандидатов \frac{p}{q}.
x=1
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
x^{4}+2x^{3}+2x^{2}+2x+1=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите x^{5}+x^{4}-x-1 на x-1, чтобы получить x^{4}+2x^{3}+2x^{2}+2x+1. Устраните уравнение, в котором результат равняется 0.
±1
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член 1, а q делит старший коэффициент 1. Перечислите всех кандидатов \frac{p}{q}.
x=-1
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
x^{3}+x^{2}+x+1=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите x^{4}+2x^{3}+2x^{2}+2x+1 на x+1, чтобы получить x^{3}+x^{2}+x+1. Устраните уравнение, в котором результат равняется 0.
±1
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член 1, а q делит старший коэффициент 1. Перечислите всех кандидатов \frac{p}{q}.
x=-1
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
x^{2}+1=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите x^{3}+x^{2}+x+1 на x+1, чтобы получить x^{2}+1. Устраните уравнение, в котором результат равняется 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 1}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замените в формуле корней квадратного уравнения a на 1, b на 0 и c на 1.
x=\frac{0±\sqrt{-4}}{2}
Выполните арифметические операции.
x\in \emptyset
Решения нет, так как квадратный корень из отрицательного числа не существует в области вещественных чисел.
x=1 x=-1
Перечислите все найденные решения.