Перейти к основному содержанию
Разложить на множители
Tick mark Image
Вычислить
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

a+b=-6 ab=1\left(-27\right)=-27
Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: x^{2}+ax+bx-27. Чтобы найти a и b, настройте систему на ее устранение.
1,-27 3,-9
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары целых -27.
1-27=-26 3-9=-6
Вычислите сумму для каждой пары.
a=-9 b=3
Решение — это пара значений, сумма которых равна -6.
\left(x^{2}-9x\right)+\left(3x-27\right)
Перепишите x^{2}-6x-27 как \left(x^{2}-9x\right)+\left(3x-27\right).
x\left(x-9\right)+3\left(x-9\right)
Разложите x в первом и 3 в второй группе.
\left(x-9\right)\left(x+3\right)
Вынесите за скобки общий член x-9, используя свойство дистрибутивности.
x^{2}-6x-27=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
Возведите -6 в квадрат.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
Умножьте -4 на -27.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
Прибавьте 36 к 108.
x=\frac{-\left(-6\right)±12}{2}
Извлеките квадратный корень из 144.
x=\frac{6±12}{2}
Число, противоположное -6, равно 6.
x=\frac{18}{2}
Решите уравнение x=\frac{6±12}{2} при условии, что ± — плюс. Прибавьте 6 к 12.
x=9
Разделите 18 на 2.
x=-\frac{6}{2}
Решите уравнение x=\frac{6±12}{2} при условии, что ± — минус. Вычтите 12 из 6.
x=-3
Разделите -6 на 2.
x^{2}-6x-27=\left(x-9\right)\left(x-\left(-3\right)\right)
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте 9 вместо x_{1} и -3 вместо x_{2}.
x^{2}-6x-27=\left(x-9\right)\left(x+3\right)
Упростите все выражения типа p-\left(-q\right) до выражений типа p+q.